NASH:
WHAT YOU NEED TO KNOW

MARCELO KUGELMAS, MD, FACP

SOUTH DENVER GASTROENTEROLOGY CENTER FOR DISEASES OF THE LIVER AND PANCREAS, SWEDISH MEDICAL CENTER
CLINICAL ASSOCIATE PROFESSOR OF MEDICINE, UNIVERSITY OF COLORADO
Disclosures, Conflicts of Interest and Off-Label Use of Medications

• Disclosures
 – None

• Conflicts of Interest
 – None

• Off-Label use of Medications
 – Metformin
 – Pioglitazone
 – Statins
 – Vitamin E
 – Lorcaserin
 – Ursodeoxycholic acid
CASE #1

- 48 year old male
- HTN and type II DM
- Tired, but working 60 hours/week
- Alcohol 2 glasses/week
- Non smoker
- Abnormal liver tests at recent check up
- BMI 32,
- 3 cm palpable hepatomegaly
- ALT 87 IU/ml, AST 73 IU/ml,
- Alkaline phosphatase 155, total bilirubin 1.0
- Albumin 3.9, INR 0.9
- Iron stores normal, ANA negative
- Anti HCV Ab neg, HBsAg neg, HBsAb neg, HAV total positive
- US: increased echodensity
Should he have a liver biopsy?

• When?

• Non-invasive alternatives
 – Prediction models
 • Probability of NASH= 0.042 x ALT + 0.095 x fasting insulin − 4.246. Sensitivity and specificity ~ 75%\(^1\)
 • NAFLD score, BARD score, Fib-4 score
 – Serum markers
 • CK-18: Sensitivity and specificity 78 and 87%, respectively\(^2\)

• Pitfalls
 – Stigma and cost
 – Sampling error and inaccurate reads

• Prognostic value?

2. Williams CD et al, Gastro 2011; 140: 124-31
NECESSARY COMPONENTS FOR DIAGNOSIS (and NAS score)
- >5% steatosis, macrovesicular > microvesicular
- Mixed lobular inflammation, including scattered PMN
- Hepatocellular ballooning, typically in zone 3 (perivenular)
- + Variable degrees of fibrosis
DEFINITIONS

• Fatty liver: fat in the liver, usually benign prognosis
• NAFLD: Non-alcoholic fatty liver disease
 – Less than 20 gm/day of alcohol for women
 – Less than 30 gm/day for men
 – Usually benign prognosis
• NASH: Non-alcoholic steatohepatitis
• ASH: Alcoholic steatohepatitis
• Insulin resistance: HOMA-IR >2
 – Fasting serum glucose x fasting serum insulin / 405
Metabolic Syndrome
(3 or more of the following)

- Increased body mass index (>30 kg/m²)
- Central adiposity (waist >102 cm in men, >88 cm in women)
- Hypertension (SBP >130, or DBP >85 mm/Hg)
- Dyslipidemia (TG >150 mg/dL, HDL <40 mg/dL (M) or <50 mg/dL (F))
- Fasting glucose level >110 mg/dL
EPIDEMIOLOGY

- Obesity prevalence in the US --------- 33.8%
- Diabetes in adults in the US --------- 10.6%
- NAFLD in the US --------------- 2.8% to 46%
- NASH (autopsy data) ------------------ 2.7%
- NASH (cohort biopsy data) ------------ 12.2%
- NAFLD and NASH in obese patients undergoing bariatric surgery --- 91% and 37%
From Metabolic Syndrome to Fatty Liver and Steatohepatitis

• Fat accumulates in the liver as a consequence of insulin resistance

• What leads to and perpetuates the inflammation in the liver is less clear
 – Elevated levels of circulating inflammatory cytokines and adipokines
 – Increased levels of endotoxin secondary to small bowel bacterial overgrowth, release of lipopolysaccharide and impaired intestinal barrier integrity
Genetic Predisposition

- Obesity is a recognized risk factor for NAFLD that may be modified by genetic factors
- Romeo et al. identified a I148M substitution at the PNPLA3 locus of the adiponutrin gene.
 - This allele is more common in individuals of Hispanic descent.
- Hepatic fat content was >2 fold higher in PNPLA3 I148M homozygotes than in noncarriers
- Higher ALT and AST levels in I148M carriers
- Another allele of the PNPLA3 gene, S453I, is more common in African patients and is associated with less fat in the liver
- Recent meta-analysis found an association in between I148M and NASH and hepatic fibrosis
Apolipoprotein C3 Gene Variants in NAFLD

- Two single-nucleotide polymorphisms in the gene encoding apolipoprotein C3 may be associated with hypertriglyceridemia
 - C482T and T455C
- 95 Asian Indian men (BMI 24.7): 20% were WT and 80% had at least 1 mutation
- Plasma ApoC3 was 30% higher in heterozygotes, fasting plasma [TG] were 60% higher
 - No difference in plasma cholesterol, HDL or LDL
- 38% of heterozygotes had NAFLD vs. none of the WT p<0.001
- ApoC3 variants increase ApoC3 plasma concentration, which in turn inhibit LPL and TG clearance. This results in increased [chylomicron-remnant particles] that are uptaken by the liver leading to NAFLD

THE MANY FACETS OF THE METABOLIC SYNDROME

• Cardiology -- coronary artery disease (the most common cause of death in NASH patients)
• Neurology -- CVA
• Endocrine -- diabetes, dyslipidemia, hypopituitarism, hypothyroidism, polycystic ovarian syndrome
• Rheumatology -- arthritis
• ENT -- sleep apnea
• GI -- fatty liver, more severe hepatitis to other insults
• Oncology -- Increased cancer risk
NAFLD

- Cardiovascular disease
- OSA
- Vitamin D deficiency
- Diabetes
- PCOS
- Hypothyroidism
- Elevated ferritin
- Adenomatous polyps
- Hyperuricemia

Courtesy of Dr Stephen Harrison
NAFLD vs. NASH

• Diagnosis of fatty liver
 – Clinical +/- liver US

• Diagnosis of NASH
 – Liver biopsy

• Why does it matter
 – Both increase all cause mortality
 – NASH increases liver death from cirrhosis and HCC
DIAGNOSIS

• Fatty liver can be diagnosed by non-invasive imaging, but cannot be distinguished from NASH
 – Neither imaging or biochemical tests can differentiate stage of disease

• The diagnosis and grading/staging of NASH can only be done with liver biopsy
 – Known downsides: Invasive and costly procedure, sampling error, others
 – Non-invasive prediction models are being developed
CLINICAL PRESENTATION

• Asymptomatic elevation in ALT & AST
 – Usually below 100 IU/mL
 – NAFLD and NASH may present with normal LFTs
• Fatigue, RUQ fullness, ache
• Cirrhosis
• Hepatoma
PHYSICAL EXAM

- BMI
- Central obesity
- HTN
- Hepatomegaly
- Signs of cirrhosis
LABORATORY WORK-UP

- Fasting serum glucose and insulin (+/- HbA1c), LFTs, lipid panel
- CBC, INR and chem-7 if cirrhosis is suspected
- Anti HCV-Ab, HBsAg, anti HAV total
- ANA, SMA, AMA, iron studies, TTG-Ab, QIGS
- A1AT phenotype and ceruloplasmin
IMAGING

• US: Bright hepatic echotexture
 – Cheap and reliable
 – US-based transient elastography (Fibroscan)
• CT: Decrease in attenuation compared to spleen and kidneys
• MRI: Lower signal intensity compared to surrounding tissues
 – MR Elastography
• Liver biopsy is still the gold standard to differentiate NAFLD and NASH
NATURAL HISTORY- NAFLD

• Isolated fatty liver has very little risk of progression
 – Other risks, associated with obesity, dyslipidemia, glucose intolerance and HTN still apply
 – GGT but not ALT was associated with all cause mortality including cancer and diabetes, whereas ALT was only associated with liver-related mortality in the NHANES population¹

CAUSES OF DEATH:
- 1. Cardiac; 2. Malignancy; 3. Liver

PROGRESSION TO CIRRHOSIS
- YES: 3-15%
- Risk factors: Diabetes, severe insulin resistance, BMI, weight gain >5 kg, smoking, rising LFTs. Alcohol?

PROGRESSION TO LIVER DECOMPENSATION
- YES, ~31% over 8 years

PROGRESSION TO HEPATOCELLULAR CARCINOMA
- YES: 2.6%/year in decompensated pts

RECURRENCE AFTER LIVER TRANSPLANTATION
- YES
NAFLD and DIABETES

- **NAFLD prevalence in diabetics**
 - 60-76%
- **NASH prevalence in diabetics**
 - 22%
- **Patients with NAFLD and diabetes**
 - Higher mortality
 - Higher prevalence of cardiovascular disease than non-diabetic NAFLD patients
- **In patients with advanced liver disease, diabetes is an independent predictor of**
 - Advanced fibrosis
 - Decompensation of liver function
 - Progression to HCC
NATURAL HISTORY -
Advanced fibrosis

- 247 patients with NASH and advanced fibrosis
- Mean F/U 7.1 years
- Liver-related complications: 19.4%
- HCC: 2.4%
- 10 year survival: 81.5%

HCC in NASH

- 510 pts with NASH-F4 (195) vs HCV-F4 (315) referred to CCF for LTx eval ‘03-’07
- CT + AFP Q6 months
- HCC developed in 89 pts over 3.2 years after cirrhosis diagnosis (biopsied 59%)
 - 25/195 (12.8%) NASH-F4 developed HCC. 2.6% per year
 - Older age at time of F4 diagnosis was only risk factor for HCC
 - 64/315 (20.3%) HCV-F4 developed HCC. 4% per year
- Patients who reported never drinking alcohol were significantly less likely to develop HCC compared to those who reported any lifetime drinking

NATRUAL HISTORY: HCC

• Yearly incidence 2.4%-2.7%
• Risk factors¹:
 – Age
 – Obesity
 – Diabetes mellitus
 – Iron deposition
 – ?Alcohol, tobacco, coffee?

PRINCIPLES OF THERAPY

• Lifestyle modification
 – Diet
 – Exercise
 – Weight loss

• Multiple targets for therapeutic intervention
 – Insulin sensitizers: Metformin and Pioglitazone
 – Dyslipidemia
 – HTN
 – Iron overload
 – Medications: Steroids, tamoxifen, amiodarone, methotrexate
 – Bariatric surgery
Meta-Analysis of RCT for the Treatment of NAFLD-NASH

• Weight reduction
 – NASH: Weight loss is safe and can improve histology and metabolic parameters
 – NAFLD: Exercise per se improves hepatic steatosis independent from weight loss

• Pioglitazone
 – Improved insulin sensitivity, hepatic steatosis and inflammation. No improvement in hepatic fibrosis
 – Weight gain and peripheral edema

• Metformin
 – Enhanced weight loss and improved insulin sensitivity

Meta-Analysis of RCT for the Treatment of NAFLD-NASH

- **Statins**
 - Beneficial long term effects derived from lipid lowering (and maybe less carcinogenicity)

- **UDCA**
 - Improves liver enzymes but not histology or metabolic parameters

- **Antioxidants**
 - NASH: No improvement in liver enzymes or histology except in 2 RCTs, including the NIH trial
 - NAFLD: Improved ALT

- **Bariatric surgery**
 - Overall safe and effective if it achieves significant weight loss

Diet and Exercise

• Patients who increase physical activity to ≥ 150 minutes per week had greater improvement in LFTs and metabolic indices.

• When looking at HbA1c in 251 diabetics, a combination of aerobic and resistance training was better than either by itself.

• 811 patients assigned to one of four diets and F/U over 2 years:
 – Average weight loss over 2 years was 4 kg
 – The composition of the diet did not make a difference
 • High fructose corn syrup and short chain fatty acids are BAD!

DIET and EXERCISE for NASH

- Control group (N=10) received basic education on NASH and about principles of healthy eating, physical activity and weight control
- Lifestyle intervention group (N=20) received intensive weight loss intervention with a goal of achieving 7-10% weight loss in 6 months and maintaining thereafter (diet, exercise, behavioral monitoring)

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Lifestyle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight change</td>
<td>-0.5 kg</td>
<td>-8.7 kg</td>
</tr>
<tr>
<td>>10% weight loss</td>
<td>None</td>
<td>40%</td>
</tr>
<tr>
<td>NAS</td>
<td>4.9 to 3.5</td>
<td>4.4 to 2.0</td>
</tr>
<tr>
<td>Fat</td>
<td>1.9 to 1.6</td>
<td>1.9 to 0.8</td>
</tr>
<tr>
<td>Inflammation</td>
<td>1.7 to 1.3</td>
<td>1.4 to 0.9</td>
</tr>
<tr>
<td>Fibrosis</td>
<td>1.7 to 1.4</td>
<td>1.4 to 1.4</td>
</tr>
<tr>
<td>ALT</td>
<td>86 to 69</td>
<td>84 to 42</td>
</tr>
</tbody>
</table>
How can we enhance patient compliance with lifestyle modification?

- Communicate with empathy
- Be sensitive to general stigma against obesity
- Discuss pros and cons of proposed changes to lifestyle
- Explore reasons for perpetual poor dietary and exercise choices
- Offer specific choices for diet and exercise
- Explain treatment adherence benefits

WEIGHT LOSS MEDICATIONS

• Orlistat
 – Improvement related to weight loss
 – No improvement in fibrosis

• Lorcaserin
 – Not validated

• Rimonabant
 – Pulled from the EU market for neuro-psychiatric side effects
METFORMIN

• Mechanism: decreased gluconeogenesis, decreased glucose absorption and facilitates glucose uptake and utilization
• Improved ALT normalization when compared to diet alone (OR 2.83, CI 1.27-6.31)
• Improved steatosis by imaging (OR 5.25, CI 1.09-25.21)
• +/- effect on histology
• Ongoing trial comparing to vitamin E (TONIC)
PIOGLITAZONE

- Selective peroxisome proliferator-activated receptor gamma agonist
- Improves insulin resistance
- Redistributes fat from muscle and liver to adipose tissue
- Increases circulating levels of adiponectin (produced by fat, insulin-sensitizer)
- Shown to improve biochemistries and histology while the patient is taking the medication
PIOGLITAZONE, VITAMIN E or PLACEBO FOR NASH

- 247 patients randomized
 - Placebo = 83;
 - Vit E (800 IU/day) = 84
 - Pioglitazone (30 mg/day) = 80

- Primary end point: paired histology after 96 weeks of therapy
 - 25 patients without 2nd biopsy were counted as treatment failures

Sanyal et al. NEJM 2010; 362: 1275-85
RESULTS

- The study was designed to find a 26% improvement in NASH in between groups with 80 patients each (p<0.025)
- 17%, 18% and 28% of the baseline liver biopsies showed no ballooning
- 43% of patients treated with vit E vs. 19% with placebo showed histologic improvement (p=0.001)
- 34% treated with Pioglitazone vs. 19% treated with placebo showed histologic improvement (p=0.04 NS)

Sanyal et al. NEJM 2010; 362: 1275-85
<table>
<thead>
<tr>
<th>Variable</th>
<th>Placebo</th>
<th>Vitamin E</th>
<th>Pioglitazone</th>
<th>P=Vit E vs Plac</th>
<th>P=Pio vs Plac</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>83</td>
<td>84</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biopsy x2</td>
<td>72</td>
<td>80</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% improved</td>
<td>19</td>
<td>43</td>
<td>34</td>
<td>0.001</td>
<td>0.04</td>
</tr>
<tr>
<td>Steatosis (%)</td>
<td>31</td>
<td>54</td>
<td>69</td>
<td>0.005</td>
<td><0.001</td>
</tr>
<tr>
<td>Lobular inflam. (%)</td>
<td>35</td>
<td>54</td>
<td>60</td>
<td>0.02</td>
<td>0.004</td>
</tr>
<tr>
<td>Ballooning (%)</td>
<td>29</td>
<td>50</td>
<td>44</td>
<td>0.01</td>
<td>0.08</td>
</tr>
<tr>
<td>Change in NAFLD activity score</td>
<td>-0.05</td>
<td>-1.9</td>
<td>-1.9</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Fibrosis</td>
<td>-0.1</td>
<td>-0.3</td>
<td>-0.4</td>
<td>0.19</td>
<td>0.10</td>
</tr>
<tr>
<td>NASH resolution (%)</td>
<td>21</td>
<td>36</td>
<td>47</td>
<td>0.05</td>
<td>0.001</td>
</tr>
<tr>
<td>GGT (U/L)</td>
<td>-4.0</td>
<td>-14.0</td>
<td>-21.1</td>
<td>0.003</td>
<td><0.001</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>0.4</td>
<td>0.4</td>
<td>-0.7</td>
<td>0.8</td>
<td>0.03</td>
</tr>
<tr>
<td>TG (mg/dL)</td>
<td>-6.7</td>
<td>-0.6</td>
<td>-19.8</td>
<td>0.45</td>
<td>0.16</td>
</tr>
<tr>
<td>LDL (mg/dL)</td>
<td>-5.8</td>
<td>-12.0</td>
<td>-8.1</td>
<td>0.07</td>
<td>0.26</td>
</tr>
</tbody>
</table>
VITAMIN E

- Not as benign as once thought?
- Doses greater than 400 IU/day have been linked to an increase in all cause mortality
- A recent study found greater incidence of prostate cancer with vitamin E supplementation
OTHERS

- Statins
- Ezetimibe
- Angiotensin-receptor blockers
- Betaine
- Incretin mimetics (liraglutide and exenatide)
- Vitamin D
- Antibiotics
- Obeticholic acid
Bariatric Surgery

- Recommended for
 - Well informed and motivated patient
 - Obese patients with BMI >40
 - BMI >34 and serious coexistent medical conditions
 - Having failed conservative approach
 - Adequate surgical risk
- Careful patient selection
- 0.1-0.5% 30 day mortality
- 20% morbidity, less with laparoscopic approach by experienced surgeon
Bariatric Surgery

- Excess weight lost ~ 60%
- Diabetes improves or resolves in >80% patients
- Dyslipidemia improves in > 70%
- HTN improved or resolved in 79%
- OSA improved or resolved in >85%
- Improved QOL
- Decreased $ spent on medications
- Not a practical approach for the patient population as a whole
MY APPROACH

- Diagnose and stage – Liver biopsy
- Identify other comorbidities
 - Team approach
- Lifestyle modification
 - Emphasize lifestyle and dietary modification
 - De-emphasize weight
- Office visits every 3 months the 1st year
- LFTs +/- HOMA/HbA1c +/- lipid panel +/- iron tests every 3 months
CONCLUSIONS

• Look for it
• Consider biopsy in those with:
 – Chronic transaminitis for 10 or more years
 – Diabetes
 – Coexistent liver disease
• Treat the metabolic syndrome
• Mainstay of therapy:
 – Lifestyle change with dietary modification, aerobic exercise and weight loss (>6% body weight)
“Do not follow where the path may lead
Go instead where there is no path and leave a trail”

Ralph Waldo Emerson