Heart Failure Review

Heart Failure

- Final common pathway for many cardiovascular diseases whose natural history results in symptomatic or asymptomatic left ventricular dysfunction
- Cardinal manifestations of heart failure include dyspnea, fatigue and fluid retention
- Risk of death is 5-10% annually in patients with mild symptoms and increases to as high as 30-40% annually in patients with advanced disease

Causes of HF:

Anything that affects the pumping efficiency

Systolic HF – Most common HF (70%), due to contractile failure of myocardium or inability to empty ventricles, EF < 40%.

- CAD and Ischemic Cardiomyopathy
- HypertensionDiabetes

Diastolic HF – Inability to fill or to relax, contractility can be normal or increased. (Think Frank-Starling) - CAD - Systemic Hypertension - Valve Disease - Constrictive Pericarditis - Hypertrophic Cardiomyopathy. - Starling

Biotronik, Inc. Education Departm

NYHA Classification of heart failure

- Class I: No limitation of physical activity
- Class II: Slight limitation of physical
- Class III: Marked limitation of physical
- Class IV: Unable to carry out physical activity without discomfort

New classification of heart failure

- Stage A: Asymptomatic with no heart damage but have risk factors for heart
- Stage B: Asymptomatic but have signs of structural heart damage
- Stage C: Have symptoms and heart
- Stage D: Endstage disease

Factors aggravating heart failure

- Myocardial ischemia or infarctDietary sodium excess

- Conditions associated with increased metabolic demand (eg pregnancy, thyrotoxicosis, excessive physical activity)
- Administration of drug with negative inotropic properties or fluid retaining properties (e. NSAIDs, corticosteroids)

Goals of treatment

- To improve symptoms and quality of life
- To decrease likelihood of disease progression
- To reduce the risk of death and need for hospitalisation

Compensatory changes in heart failure

- Activation of SNS
- Activation of RAS
- Increased heart rate
- Release of ADH
- Release of atrial natriuretic peptide
- Chamber enlargement
- Myocardial hypertrophy

Carvedilol in Heart Failure

- Effective receptor-blockade approach to heart failure
- Negative inotropic effect counteracted by vasodilation
- Provides anti-proliferative, antiarrhythmic activity and inhibition of apoptosis
- Prevents renin secretion

	Placebo (n=398)		
All-cause mortality	31 (7.8%)	22 (3.2%)	65%
Death due to progressive heart failure	13 (3.3%)	5 (0.7%)	
Sudden death	15 (3.8%)	12 (1.7%)	
Risk of hospitalization for cardiovascular reasons	78 (19.6%)	78 (14.1%)	27%
Combined risk of mortality & hospitalization	98 (25%)	110 (16%)	38%

ANZ Multicentre Heart Failure Trial			
	Placebo (n=208)	Carvedilol (n=207) R	% Risk teduction
All-cause mortality	26 (12.5%)	20 (10%)	24%
Risk of hospitalization for cardiovascular reasons	84 (40%)	64 (31%)	28%
Combined risk of mortality & hospitalization	97 (47%)	74 (36%)	29%

Effect of carvedilol on progression of congestive heart failure

	All randomized patients		
		Carvedilol (n=232)	
Primary endpoint	28 (21%)	25 (11%)*	
Death due to CHF	4 (3%)	0 (0%)	
Hospitalization due to worsening CHF	8 (6%)	9 (4%)	
Increase in CHF medication	16 (12%)	16 (7%)	
* Placebo vs. carvedilol, p = 0.008			
Drugs of Today 1998; 34 (Suppl B): 1-23.			

Management of Complications

Transient worsening of heart failure (e.g. increasing dyspnea, decreasing exercise capacity)

- Increase dose of diuretic and/or ACE inhibitor
- If necessary, reduce carvedilol dose and/or prolong titration interval
- Search for other possible causes (e.g. thyroid malfunction, infection, non-compliant drug intake, excessive liquid intake, etc.)

Vasodilatory Symptoms (dizziness, light headedness,

symptomatic hypotension)

- Decrease diuretic dose and, if necessary, ACE inhibitor dose
- If the cessation of both is not successful, reduce carvedilol dose and/or prolong titration interval

Management of Complications (Contd.)

Bradycardia (Pulse rate below 55 beats/min)

- Check and eventually reduce digitalis dose
- If necessary, reduce carvedilol dose and/or prolong titration interval
- Withdraw carvedilol only in the event that hemodynamics are affected
- Symptoms of Bronchial obstruction
- Search for other possible causes (e.g., concurrent infection, subacute pulmonary edema)
- Reduce dose of, or withdraw, carvedilol only after possible causes for symptoms have been ruled out

A pause to think and digest ...

ACE Inhibitors: physiologic benefits

Arteriovenous Vasodilatation

- ↓ pulmonary arterial diastolic pressure
- ↓ pulmonary capillary wedge pressure
- ↓ left ventricular end-diastolic pressure
- \downarrow systemic vascular resistance
- ↓ systemic blood pressure
- \downarrow maximal oxygen uptake (MVO₂)

ACE Inhibitors: physiologic benefits

- ↑ LV function and cardiac output
- ↑ renal, coronary, cerebral blood flow
- No change in heart rate or myocardial contractility
- no neurohormonal activation
- resultant diuresis and natriuresis

ACE Inhibitors: clinical benefits

- Increases exercise capacity
- improves functional class
- attenuation of LV remodeling post MI
- decrease in the progression of chronic HF
- decreased hospitalization
- enhanced quality of life
- improved survival

Asymptomatic Patients

Enalapril

SOLVD Prevention Trial

EF<35% ↓ HF progression, ↓ hospitalization

Captopril

SAVE, GISSI-3, ISIS-4 Post MI, EF <40% ↓ overall mortality, ↓ re-infarction ↓ hospitalization, ↓ HF progression

Symptomatic Patients

Hydralazine + Isosorbide dinitrate

VHeFT-I ↓ mortality, improved functional class as compared with use of digoxin and diuretics VHeFT-II proved less effective than enalapril

Guidelines to ACE Inhibitor Therapy

Contraindications

- Renal artery stenosis
- Renal insufficiency (relative)
- Hyperkalemia
- Arterial hypotension
- Cough
- Angioedema
- Alternatives
 - Hydralazine + ISDN, AT-II inhibitor

Guidelines to ACE Inhibitor Therapy

- All patients with symptomatic heart failure and those in functional class I with significantly reduced left ventricular function should be treated with an ACE inhibitor, unless contraindicated or not tolerated
- ACE inhibitors should be continued indefinitely
- It is important to titrate to the dosage regimen used in the clinical trials ... in the absence of symptoms or adverse effects on end-organ perfusion
- In very severe heart failure, hydralazine and nitrates added to ACE inhibitor therapy can further improve cardiac output

Diuretics

- Indicated in patients with symptoms of heart failure who have evidence of fluid retention
- Enhance response to other drugs in heart failure such as beta-blockers and ACE inhibitors
- Therapy initiated with low doses followed by increments in dosage until urine output increases and weight decreases by 0.5-1kg daily

Digoxin

- Enhances LV function, normalizes baroreceptormediated reflexes and increases cardiac output at rest and during exercise
- Recommended to improve clinical status of patients with heart failure due to LV dysfunction and should be used in conjunction with diuretics, ACE inhibitors and beta-blockers
- Also recommended in patients with heart failure who have atrial fibrillation
- Digoxin initiated and maintained at a dose of 0.25 mg daily
- Adverse effects include cardiac arrhythmias, GI symptoms and neurological complaints (eg. visual disturbances, confusion)

Summary of drug treatment for CHF			
Asymptomatic LV dysfunction	Mild to moderate CHF	Mod to severe CHF	
ACE Inhibitor Beta blocker	Digoxin Diuretics ACE Inhibitor Beta blocker	Digoxin Diuretics ACE inhibitor Beta blocker Spironolactone	

Any questions?

HF Clinical Evaluation

Objectives:

- Ischemic Heart Disease
 Hypertension
 Infections (e.g., viral myocarditis, Chagas' disease)
 Toxins (e.g., alcohol or cytotoxic drugs)
 Valvular Disease
 Prolonged Arrhythmias
 Idiopathic Cardiomyopathy

Biotronik, Inc. Educa

Assess HF severity

- 1. History assessment:

 - Atrial Fibrillation, other rhythm disturbances
 EF LV function

 - Minnesota Living With Heart failure Questionnaire
- 2. QRS duration
- 3. Six-minute walk test
- Brain Natriuretic Peptide (BNP) blood test

ECHO – important diagnostic tool

Biotronik, Inc. Education Department

- **2-D ECHO** to assess:
 - LV size

 - Valvular status (regurgitation, stenosis)

Stress ECHO - to assess:

abnormalities with exercise

Biotronik, Inc. Education Departm

Challenge for Drug Therapy

- Drug therapy is considered the gold standard for treatment of HF
- HF patients are prescribed an average of six medications
- Only 10% patients are fully compliant
- 1/3 of patients never refill their prescriptions

Biotronik, Inc. Education Department

Stand by for a really important message ...

"Remodeling"

- Ventricular remodeling = worsening HF
- Reverse ventricular remodeling suggests:
 - ↓ overall size of the heart primarily L'
 - conduction delays are improved
 - $-\downarrow$ Mitral valve regurgitation
 - improved LV contraction dynamics
 - therefore \uparrow CO and \downarrow HF symptoms

New Directions in HF therapy

- Work is now in identifying "responder" to resynchronization therapy - CRT – (1/3 don't respond)
- Identification of mechanical dyssynchrony

 (wide QRS inadequate)
- Echo enhancement of tissue doppler flow

Need For Better Selection Criteria

- QRS duration: has been an inclusion criteria in all major trials
 mechanical dyssynchrony may be absent in approx 30% of pts with HF & BBB
 - present in 40-50% of pts with a normal QRS.¹⁻³
- Since LV contractility is not dependent on QRS width, pt selection with something like Tissue Velocity Imaging (TVI) measuring contractility of myocardial fibers in a longitudinal plane would be a better measure of dyssynchrony than a wide QRS⁴
- Identify lagging segments for optimal LV placement !
 - 1. Fauchier L, et al. Am J Cardiology 2003; 92:341-344 2. Yu CM, et al. Heart 2003; 99:54-60 3. Burri H, Lerch R. PACE 2006; 3:474-479. 4. Hayes et. al. Resynchronization & Defibrillation for Heart Failure. P151-54

Lead Placement

- Group 1: LV lead in anterior or anterolateral branches (66 pts.)
 Group 2: LV lead in lateral or posterolateral branches (167 pts.)
- LVEF by echo did NOT improve significantly in Group 1
- LVEF by echo DID improve significantly in Group 2
- Conclusion:
 - Placement of CS lead in lateral and posterolateral branches is associated with significant improvement in LV function as a measure of post-implant LVEF.

Rossillo, Antonio, M.D., et al. "Impact of Coronary Sinus Lead Position on Biventricular Pacing; Mortality and Echocardiographic Evaluation During Long-Term Follow-Up," Journal of Card. Elect.

Good Anatomical Distance

Heart Failure Concepts

- CRT represents an important new therapy for patients with Class III/IV heart failure, low ejection fraction and a wide QRS
- CRT has the potential to improve symptoms and functional status, reduce ventricular remodeling and improve survival.
- CRT with a defibrillator (CRT-D) provides added protection against sudden death in heart failure.

Biotronik, Inc. Education Department

Case I

- 74 year old male, 2 previous hospitalizations for CHF over a 4 month period, known ischemic CM, EF 20-25%.
- EKG: LBBB.
- Meds: B. Blockers, ACEI, Diuretics, Digoxin, spironolactone.

Case 1 (contd.)

- Treatment: BiV Icd placed in 2007.
- Have followed for 3 years, no hospitalizations for CHF.
- Benefits to Pt: able to work in yard daily, builds Bbq's.
- Has gone from Class IV to Class II, no change in EF, MR Improved.

Case II

- 65 year old female, multiple hospitalizations for CHF over 1 year period, EF 20%, 3+MR.
- Biv Icd placed in 2009.
- Benefits: EF inc. to 30%, MR 1-2+, no hospitalizations for CHF, fully functional.