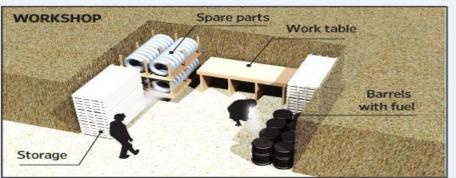
From the Depths of Hell: Disaster, Crisis
Management and
Innovation in a Chilean
Mine

J.D. Polk, DO, MS, MMM, CPE, FACOEP

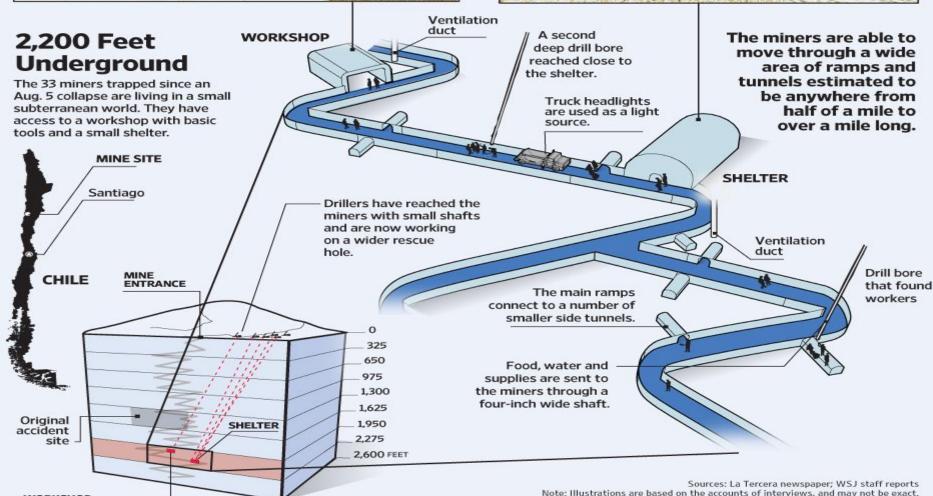
Dean, COM


Former Chief of Space Medicine, NASA

UNCLASSIFIED

Overview

- You are the medical consultant....
- 33 men are trapped in a mine 2,400 feet below solid rock.
- Ages range from 19 to 62
- Known medical conditions in some of the miners are Type 2 diabetes, Silicosis, Hypertension, Coronary Disease, COPD.



WORKSHOP

Graphic by Alberto Cervantes/The Wall Street Journal

Benchmarking

Leadership

FLAT, EMPOWERED Leadership chain Daily Briefings Crisis Management Team

Recommendations by Phase

What are the initial concerns?

- 600,000 tons of rock collapsed into the mine.
- What two things kill the majority of victims in mine accidents?

- Trauma
- Asphyxiation

Phase 1- Initial Incident

- Trauma
- Blast pressure
 - Air Filled spaces
- Asphyxia
- Explosion/ignition
- Lethal gases
- Air Sampling performed
- Fresh air pumped in

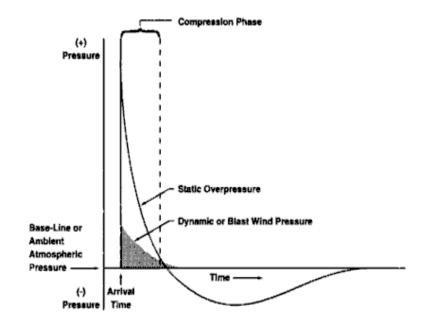


Figure 3-II. Variations of Overpressure and Dynamic Pressure with Time

Masters of their Own Fate

- 17 days before being found
- Dug wells
- Divided up the rations

Survival

- The miners had one teaspoon, one quarter of a peach, and a teaspoon of milk every other day.
- You finally have a paloma that has reached them.
- You are about to send food down. What is your initial concern?

- Refeeding syndrome
- Liver glycogen has been used up.
- Down-regulation of insulin.
- Brain switches to ketones.

Refeeding Syndrome

- What is the main electrolyte disturbance in refeeding syndrome?
- What other electrolytes are effected?
- What vitamin is of concern?

- Phosphorus (hypophosphatemia)
- Potassium and magnesium (hypokalemia and hyomagnesemia)
- Thiamine (B1)

Phase 2- Survival Re-feeding Syndrome

- Impaired carbohydrate utilization
- Increased insulin release with decreased ability to use free fatty acids
- Increased CO2 production
- Profound hypophosphatemia and hypokalemia

- Gradually increase calories
- Keep the RQ (respiratory quotient) as close to 0.85 as possible.
- Supplement with phosphorus, potassium, and magnesium.
- Water soluble vitamins

Harris- Benedict Equation on caloric need based on basal metabolic rate

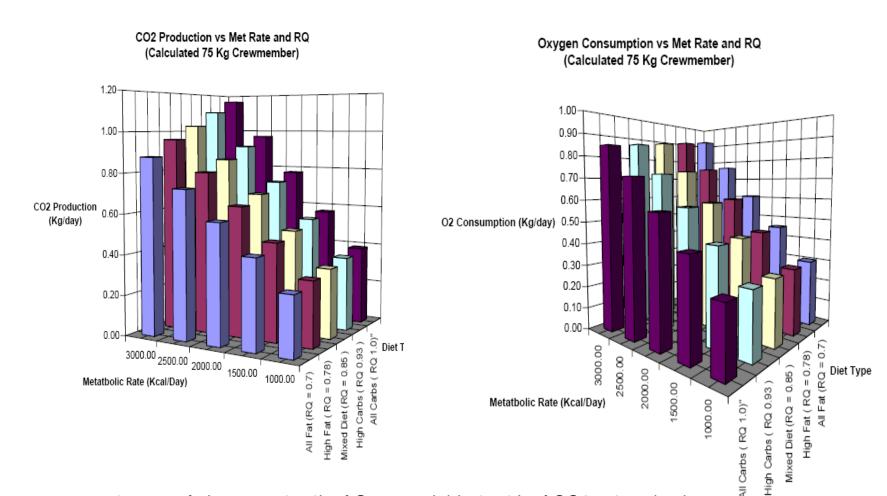
```
BMR = 66.47 + 6.23 * Wt (lb) + 12.67 * Ht (in) - 6.76 * age (yrs), Men
BMR = 655.1 + 4.34 * Wt (lb) + 4.69 * Ht (in) - 4.68 * age (yrs), Women
```

Protein requirements in catabolic states 1.4gm/Kg/day

Phase 2- Survival Re-feeding Syndrome

Ensure plus and Supportan: thiamine, phosphate, potassium, and protein and "going low and slow" (10-20 kcal/kg initially) allowed the liver stores to regenerate without causing intracellular shifts. This prevented lifethreatening complications from the re-feeding.

- Hypophosphatemia
- Hypokalemia
- Hypomagnesium
- Cardiac dysrhythmias
- Cardiac failure
- Cardiac arrest


Energy (kcal/8 oz)	Protein (g/8 oz)	Potassium (mg/8 oz)	Phosphorus (mg/8 oz)	Magnesium (mg/8 oz)	Thiamin (mg/8 oz)
249	9	370	300	100	0.374
352	13	440	200	100	0.375
358	14.8	430	250	100	0.750
355	19.5	330	178	47.5	0.452
356	23.7	303	284	61.6	0.711
1049	38	1559	1264	421	1.6
1483	55	1854	843	421	1.6
1509	62	1812	1054	421	3.2
1496	82	1391	750	200	1.9
1500	100	1277	1197	260	3.0
	249 352 358 355 356 1049 1483 1509 1496	249 9 352 13 358 14.8 355 19.5 356 23.7 1049 38 1483 55 1509 62 1496 82	249 9 370 352 13 440 358 14.8 430 355 19.5 330 356 23.7 303 1049 38 1559 1483 55 1854 1509 62 1812 1496 82 1391	249 9 370 300 352 13 440 200 358 14.8 430 250 355 19.5 330 178 356 23.7 303 284 1049 38 1559 1264 1483 55 1854 843 1509 62 1812 1054 1496 82 1391 750	352 13 440 200 100 358 14.8 430 250 100 355 19.5 330 178 47.5 356 23.7 303 284 61.6 1049 38 1559 1264 421 1483 55 1854 843 421 1509 62 1812 1054 421 1496 82 1391 750 200

Courtesy Scott Smith, PhD and team

4/13/2015 UNCLASSIFIED 14

Courtesy of Dr. Doug Hamilton and Team

1 gram of glucose + 0.74L of Oxygen yields 0.74 L of CO2 + 3.75 kcal

Who else gets refeeding syndrome?

- Neurosurgical patients
- Greater than 5-7 days of malnourishment
- TPN without adequate phosphate.

Starvation and Dehydration

- The mine is 90 degrees and 90 percent humidity
- The miners were sleeping on hot rocks, vehicles, and just about anywhere
- What could be the consequences?
- What test would you use?

- Urine dipstick test was one of first sent down.
- 50% of the miners were positive for myoglobin.
- Rhabdomyolysis and acute tubular necrosis
- Those miners targeted for consumption of 5 liters of water.

Innovation

Competition

Brainstorming Meetings

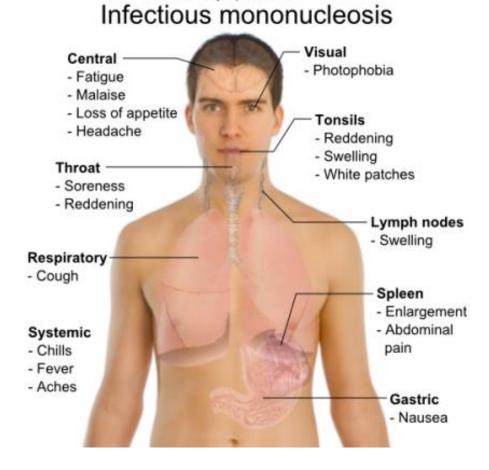
Phase 3- Sustain Contingency Re-supply and Stocking

Contingency Supply

 Send medical, water, and food supplies sufficient for enough time to re-establish supply chains, in the event of a contingency cave-in or the miners are again cut off from the surface.

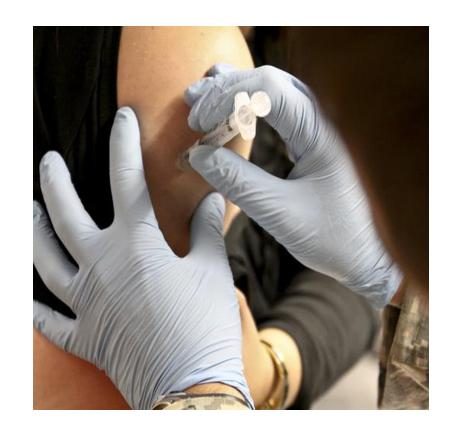
Treatment of Chronic Conditions

- The patient with Type 2 diabetes was on metformin prior to the accident.
- Should you begin sending that down?
- What is the physiologic concern with metformin under these circumstances?
- Consider him diet controlled until his calorie count is over 1800 calories and he is no longer spilling ketones.
- Lactic acidosis is the concern.


Skin

- Linoleic Acid deficiency-
- Eczema-like rash with neutropenia and thrombocytopenia.
- Unresponsive to steroids or antifungals,
- This is easily treated with linoleic acid capsules and supplementation or safflower oil 15cc/day.

Latent Virus Activation


Herpes Virus family– EBV

Main symptoms of

Immunization

- Vaccination for tetanus (in the form of diphtheria/tetanus toxoid), pneumococcal, and meningococcal strains
- Influenza
- Debate

Phase 3- Sustain

Common Medical Maladies Seen in Long Duration

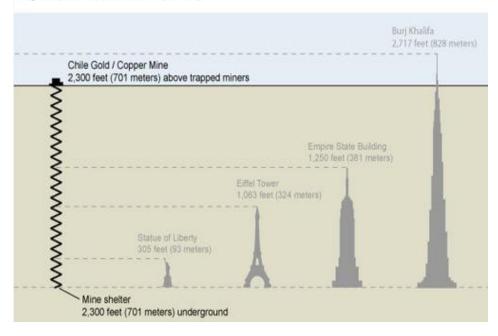
- Vitamin D deficiency
- Epstein Barr/Herpes Latent Virus Reactivation
- Constipation
- Respiratory Infections
- Skin Infections/Irritations
- Dental caries and peridontal disease

Alcohol and Tobacco

- Medical versus psych recommendations
- Concerns for nutritional status and unknown Thiamine status
- Assumption of intake upon rescue

- Lung disease versus second hand smoke
- Potential for revolt due to need for control
- Choosing the battles

Psychological Support


- Circadian and sleep-wake cycles
 - Regular cycles of light/dark, exercise and eating in community area (eating, social, etc)
 - Regular time each day for each miner for these things.
 Preserve an individual's 24h cycle.
 - Since miners work in 3 shifts, organized 3 distinct lighting areas in mine:
 - Sleeping area
 - Community social area
 - Mining work areas

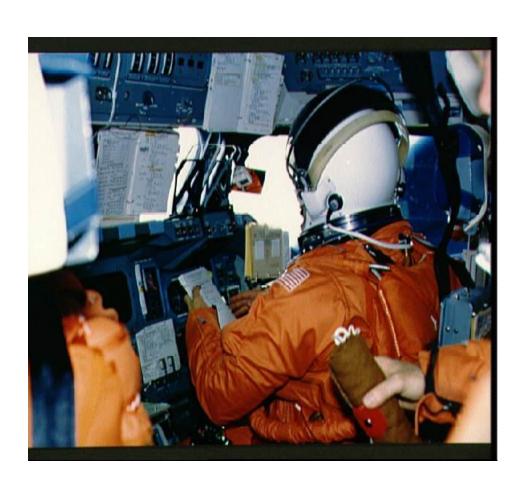
Phase 4- Rescue Decompression Risk

 Since the miners are saturated at 3.3 FSW and the most conservative limit for safe direct ascent is 17 FSW, it is unlikely that DCS is a problem

Chile mine deeper than height of Empire State building

August 26, 2010 -- Updated 2357 GMT (0757 HKT)

Tan et al. 2008, Courtesy of Johnny Conkin



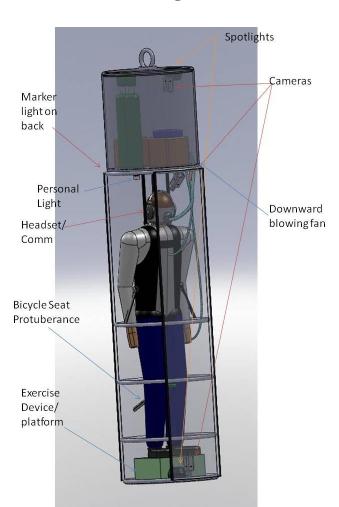
The Rescue

- The miners are well nourished, and you have been successful in treating their chronic medical conditions.
- It is time to contemplate the rescue.
- They will have to be upright for the duration of the rescue. What physiologic complications could occur?

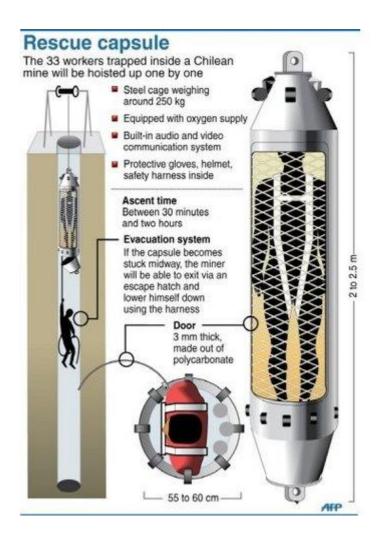
- Orthostatic hypotension
- Hypoxia
- Hypercarbia
- Anxiety reaction

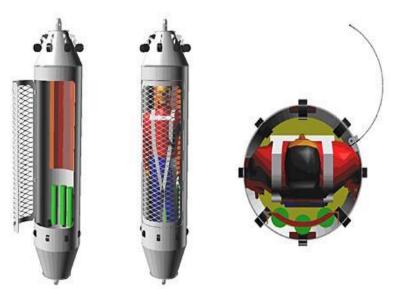
How would you combat the physiologic consequences?

- Compression garment
- Salt tablets
- Fluid load
- Sunglasses for UV protection

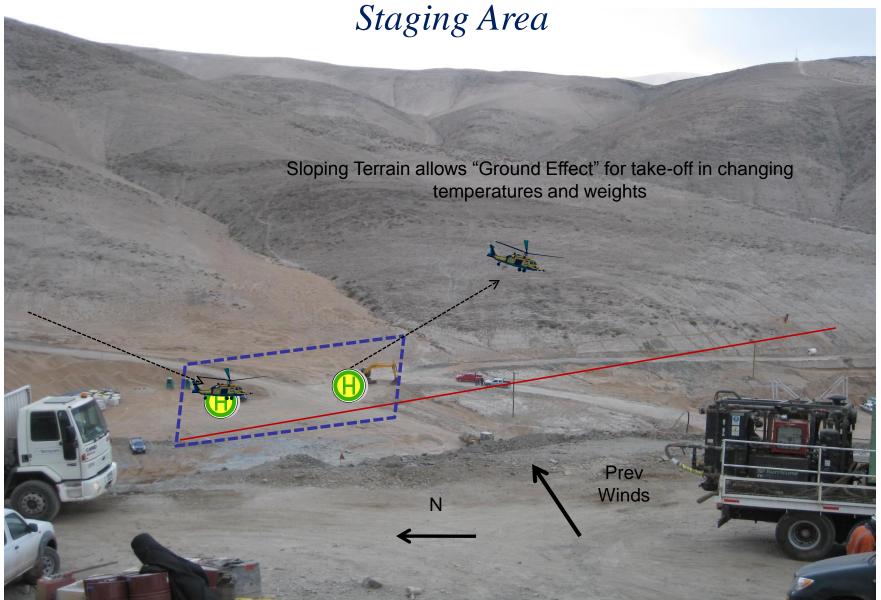

Fluid Loading Protocol

Miners Mass	Number of 500mg salt tablets at	Amount of electrolyte solution	Number of 500mg salt tablets at 4	Amount of electrolyte solution at 4 hours prior to ascent	
	12 hours prior to ascent	at 12 hours prior	hours prior to ascent		
75 kilos	4	38 ounces (1121 ml)	4	38 ounces (1121 ml)	
80 kilos	5	40 ounces (1180 ml)	5	40 ounces (1180 ml)	
85 kilos	5	40 ounces (1180 ml)	5	40 ounces (1180 ml)	
90 kilos	6	44 ounces (1298 ml)	6	44 ounces (1298 ml)	
100 kilos	6	44 ounces (1298 ml)	6	44 ounces (1298 ml)	


The "NASA Diet"


Product	Serving	Calories	Carbohydrates (g)	Sodium (mg)	Potassium (mg)
Gatorade G Series 01 Prime	118ml	100	25	110	35
Gatorade G Series 02 Perform	240ml	50	14	110	30
Gatorade G Series 03 Recover	240ml	60	7	120	45
Gatorade G Series 01 Pro Prime	355ml	330	82	220	60
Gatorade G Series 02 Perform	240ml	50	14	200	90
Gatorade G Series 03 Recover	240ml	200	33	190	270

What requirements would you write for the escape pod?



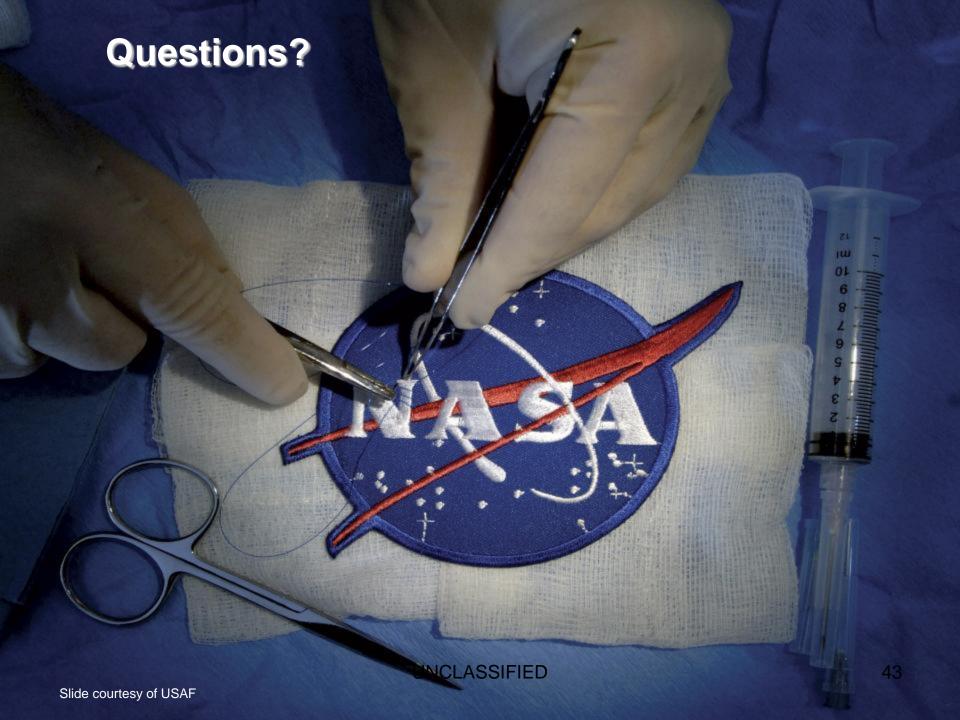
Suggested features and location of Helipad
Staging Area

Six Sigma

Why did each miner get placed on a cot and taken to the triage tent when they looked so good coming out?

Phase 5- Convalescence, Recovery, Reintegration

- The miners are being followed for a period of months for respiratory, skin, and viral syndromes.
- Post Traumatic Stress
- Depression
- Why?



- Innovation, leadership, and mindset of the Chilean government, medical and mining personnel were paramount to the success.
- Lessons from Spaceflight were directly applicable to the ground.
- Spaceflight has a tangible value that is difficult to quantify.

4/13/2015

UNCLASSIFIED

