Adult Diseases Now Seen in Childhood

Geetha Raghuvir MD, MPH
Cardiologist, Children's Mercy Hospital
Associate Professor of Pediatrics
University of Missouri, Kansas City
5-1-2010

Conflicts of Interest / Disclosures – None

Atherosclerosis
- Degenerative disease of the vasculature.
- Multiple etiologies.
- Slowly progressive.
- Silent until effects of vascular occlusion or embolization manifests –
 - myocardial infarction,
 - stroke,
 - sudden death,
 - peripheral arterial disease.

Burden of Atherosclerosis
- Mortality from coronary artery disease due to atherosclerosis has decreased in recent decades.
 Better treatments –
 Better control of risk factors –
Better Treatments

Better control of risk factors

- Dyslipidemia – statins.
- Tobacco smoke – Legislation, education.
- Diabetes treatments.
- Hypertension treatments.

Burden of Atherosclerosis

- But coronary artery disease is still a leading cause of death and disability in the US.
- Economic costs.
- May further increase due to the childhood obesity epidemic.
Childhood Origins – Autopsy Studies

- Coronary artery stenoses common in United States Korean and Vietnam war victims – healthy youth in their 20s.

 Enos et al, JAMA, 1953.
 McNamara JJ. et al, JAMA, 1971.

- United States teenagers killed in motor vehicle accidents had evidence of atherosclerosis in the coronary arteries on autopsy.

Pathobiological Determinants of Atherosclerosis in Youth study – Autopsy Studies

- 15-34 year accidental death victims.
- 3000 cases – 14 centers –
- Prevalence of gross and microscopic lesions in the coronary arteries.
Atherosclerosis in Children

- Although the atherogenic process begins in the first decade of life, there is a long preclinical phase.
- Intervention beginning in childhood is expected to have the maximum potential for preventing and reversing atherosclerosis.

Pathogenesis and Pathology of Atherosclerosis
Arterial Wall

Arterial Endothelium

- Vasoconstrictor-Proliferative.
- Vasodilator-Antiproliferative.

Pathology
Atherosclerosis Natural History

With permission from Dr. H. McGill

Reduction of Coronary Artery Disease

- Cannot be achieved if adults only are targeted for prevention as the disease is end stage by then.
Atherosclerosis

DEADLY QUARTET is likely to expedite the disease process.

Lifetime Risk of Childhood Obesity

Evidence

In a large cohort of children born in Denmark and followed for over 5 million person-years, a higher BMI during childhood was associated with increased risk of coronary artery disease in adulthood.

Lifetime Risk of Childhood Obesity

Evidence

- A follow up of the Harvard Growth Study of 1922 to 1935 showed that being overweight in adolescence resulted in a relative risk of coronary artery disease mortality of 2.3, independent of adult weight after 55 years of follow-up.

- A British study involving a 57 year follow up of a cohort also confirmed that all-cause and cardiovascular mortality were associated with childhood BMI when even >75th percentile.

Need for Medical Involvement in Coronary Heart Disease As a Function of Era and Patient Life Stage

Permission from author - Dr. T. Kimball, Cincinnati Children's Hospital
Immutable Risk Factors for Atherosclerosis

- Age.
- Male sex.
- Family History.

Mutable Risk Factors for Atherosclerosis

Modifiable Risk Factors

Source – National Geographic, February 2007

Cholesterol Levels in Various Species

Eur J Clin Nutr 2002;56:S42-52
Dyslipidemia

- High Total or LDL Cholesterol.
- Low HDL Cholesterol.
- High Triglycerides.
- High VLDL Cholesterol.

Optimal Cholesterol Levels

- Total Cholesterol – < 170 mg/dl.
- LDL - atherogenic. Makes up majority of TC – < 110 mg/dl.
- HDL - non atherogenic. Made in liver and small intestine. Makes up 25% of TC. Transports surplus cholesterol back to liver and out of body – ≥ 45 mg/dl.
- VLDL - formed in liver, helps transport triglyceride from liver to fat cells.
- Triglycerides are the main storage form of fatty acids - < 100 mg/dl.
Dyslipidemia Causes
Inherited Disorders of Lipid Metabolism

- Familial Dyslipidemia – 1 in 400.
- TC > 300 mg%, LDL > 240 mg%.
- Premature onset of coronary artery disease.

Dyslipidemia - Diet and Lifestyle
AKA Obesity

- Childhood obesity and overweight – 1 in 3.
- Premature onset of coronary artery disease likely - ? more likely.

- High fat, low fiber foods.
- Fast foods.
- Sugar consumption – pop, orange juice.
- Portion sizes.
- Sedentary life style.
- Behavioral, psychological, cultural aspects of eating.
- Hunger and eating.
Dyslipidemia Causes – Diseases

- Diabetes.
- Hypothyroidism.
- Nephrotic syndrome.
- Renal failure.
- Storage diseases.
- Liver disease – cirrhosis, biliary atresia.

Dyslipidemia Causes – Drugs

- Steroids.
- Retinoic acid.
- Thiazides.
- Anticonvulsants.
- Beta blockers.
- Contraceptives.
- Alcohol.
- Psychotropics.
Risk Stratification beyond risk factors?

- Conventional cardiovascular risk factors explain only up to 50% incidence of heart disease and strokes.
- Unknown risks ??

Risk Stratification beyond risk factors?

- Risk factor assessment alone may not be entirely sound in predicting atherosclerosis as at every risk factor level there is variation in amount of atherosclerosis due to -
 - Genetic factors.
 - Risk factor interaction.
 - Duration of exposure.

A tool that assesses “end organ damage” may be useful.
Risk Stratification beyond risk factors?

- Children do not have symptoms of coronary artery disease.
- Subclinical Markers of Atherosclerosis – (surrogate markers).
- Increased carotid artery intima-media thickness.

Atherosclerosis in Children Summary

1. Atherosclerosis is a progressive, degenerative disease beginning in childhood BUT SILENT UNTIL ADVANCED.
2. Assessing subclinical markers should aid in evaluating “end organ damage” as these markers represent the end result of all risk factor exposures.
3. Atherosclerosis may be more prevalent and clinical effects may be manifesting earlier due to the prevailing obesity epidemic.
“A man is as old as his arteries.”

Dr. Thomas Sydenham

Carotid Artery Intima Media Thickness

UMKC School of Medicine

Children's Mercy Hospitals & Clinics

www.childrensmercy.org
Carotid Artery Intima Media Thickness

- Non invasive.
- Easy to perform.
- No radiation.
- Can be repeated.
- Inexpensive.

Carotid Artery Intima-Media Thickness

- Carotid artery intima-media thickness is an independent predictor of future cardiovascular events, heart attacks, strokes and death.
- Progression in carotid artery intima-media thickness predicted events better than risk factor measurements.
- “Window to the coronary arteries”.

Population based prospective studies affirming prognostic value of carotid artery intima media thickness assessment

- ARIC Atherosclerosis Risk in Communities - 12,841 subjects.
- CHS Cardiovascular Health Study - 4476 subjects.

- Increased carotid artery intima media thickness was associated with increased risk of myocardial infarction, stroke or death even after adjusting for other risk factors.
Carotid Artery Intima-Media Thickness in Childhood

Epidemiological Studies

- Bogalusa study and Muscatine study – High childhood body mass index and high childhood cholesterol levels resulted in increased carotid artery intima media thickness in young adulthood.

Carotid artery intima-media thickness in Childhood

Clinical Observational and Case Control Studies

- Hypercholesterolemia.
- Hypertension.
- Diabetes.
- Obesity.
- Tobacco smoke exposure.
High Risk Child Population

- Familial Dyslipidemia.

- Obese children with atherosclerosis promoting risk factors.

- Obese and Familial Dyslipidemia – Increasing.

Multiple risk factors – Deadly Quartet Effect

Berenson et al

Cumulative burden of childhood obesity

Berenson et al
“Vascular age” vs. “Chronological age”

Aim

- To delineate if children with obesity and atherosclerosis promoting risk factors and children with familial dyslipidemia had premature aging of their arteries.

Methods

- “Vascular age” was evaluated by comparing the child’s CIMT against percentile data for a race and sex matched 45 year old.
Carotid Artery Ultrasound

(12 yo white male)

White Men

Percentile 45 yo 55 yo 65 yo
P05 0.40 0.45 0.50
P10 0.44 0.49 0.56
P25 0.50 0.57 0.65
P50 0.57 0.66 0.76
P75 0.66 0.77 0.90
P90 0.75 0.88 1.07
P95 0.83 0.96 1.25

CIMT 0.54 mm in a 12 year old white male

Results

Obese n=40 Familial dyslipidemic n=30

- Age (years) 13.2 ± 2.9 12.7 ± 3.8
- White n (%) 35 (88) 27 (90)
- Male n (%) 23 (58) 11 (37)
Results

Obese n=40 Familial dyslipidemic n=30

- Family History n (%) 29 (73%) 29 (97%)
- Tobacco smoke n (%) 18 (45%) 7 (23%)
- BMI (kg/m²) 30 ± 4 20 ± 3*
- Systolic BP (mmHg) 124 ± 14 114 ± 13*
- Diastolic BP (mmHg) 66 ± 7 64 ± 8

*T*p<0.05

Lipid Profile and Insulin

Obese n=40 Familial dyslipidemic n=30

- TC (mg/dL) 204 ± 42 249 ± 65*
- LDL (mg/dL) 130 ± 66 175 ± 85*
- HDL (mg/dL) 42 ± 11 52 ± 14*
- TG (mg/dL) 187 ± 121 104 ± 53*
- Insulin (uIU/ml) 16 ± 8 9 ± 4*

*T*p<0.05

Vascular Age

<table>
<thead>
<tr>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td><25</td>
<td>91 (90%)</td>
</tr>
<tr>
<td><25</td>
<td>19 (26.7%)</td>
</tr>
</tbody>
</table>

[n=70]
Vascular Age

- Obese
- Familial dyslipidemic

≥25th percentile
n (%)

Obese: 30 (75)
Familial dyslipidemic: 22 (73)

>0.07 mm difference
Mutable Atherosclerosis Promoting Risk Factors in Obese Children

- Obesity.
- Systolic Blood Pressure.
- Total Cholesterol.
- Triglyceride.
- HDL Cholesterol.
- Insulin.
- Exposure to tobacco smoke.

75% had > 3 Risk Factors.
CIMT vs. # of Atherosclerosis Promoting Risk Factors

<table>
<thead>
<tr>
<th>Risk Factor #</th>
<th># of patients</th>
<th>CIMT(mm)</th>
<th>SD (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>3</td>
<td>30</td>
<td>0.54</td>
<td>0.06</td>
</tr>
<tr>
<td>≤3</td>
<td>10</td>
<td>0.53</td>
<td>0.03</td>
</tr>
</tbody>
</table>

* P 0.07

Conclusions

- “Vascular age” is similarly advanced in children with obesity and atherosclerosis promoting risk factors and in children with familial dyslipidemias.
- Estimation of “vascular age” may help further stratify children who are at high risk for developing premature atherosclerosis.
- These children may need intensive management including pharmacotherapy for risk factor modification.

Do Clinic Based Interventions Help?

Valerie Emuaakhagbon and Heather Florence*
Ashley Sherman MS††
Hongying Dai PhD††
Dr. Geetha Raghavuver, MD MPH††*

*Children’s Mercy Hospital – Dept of Cardiology
†University of Missouri/Kansas City School of Medicine

- BMI and BMI Z Scores.
- Risk Factor Measures.
- Vascular Measures.
Non Obese Dyslipidemic Children

Visit 1: 18pts
Visit 2: 18pts
Visit 3: 5pts

BMI Z Score

P = NS

Total Cholesterol (mg/dL)

Visit 1: 273
Visit 2: 248
Visit 3: 231

Optimal level <170mg/dL
LDL (mg/dL)

<table>
<thead>
<tr>
<th>Visit</th>
<th>LDL (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>175</td>
</tr>
<tr>
<td>3</td>
<td>157</td>
</tr>
</tbody>
</table>

Optimal level <110 mg/dL

P = 0.10

Triglycerides (mg/dL)

<table>
<thead>
<tr>
<th>Visit</th>
<th>Triglycerides (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>123</td>
</tr>
<tr>
<td>2</td>
<td>119</td>
</tr>
<tr>
<td>3</td>
<td>146</td>
</tr>
</tbody>
</table>

Optimal level <120 mg/dL

P = NS

HDL (mg/dL)

<table>
<thead>
<tr>
<th>Visit</th>
<th>HDL (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>45</td>
</tr>
</tbody>
</table>

Optimal level ≥45 mg/dL

P = NS
Insulin (uIU/mL)

<table>
<thead>
<tr>
<th>Visit</th>
<th>Insulin (uIU/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
</tr>
</tbody>
</table>

Optimal level <18uIU/mL

Advanced Vascular Age

<table>
<thead>
<tr>
<th>Visit</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72%</td>
</tr>
<tr>
<td>2</td>
<td>67%</td>
</tr>
<tr>
<td>3</td>
<td>40%</td>
</tr>
</tbody>
</table>

P = NS

LDL of Children Treated with Statins (mg/dL)

<table>
<thead>
<tr>
<th>Visit</th>
<th>LDL (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>175</td>
</tr>
<tr>
<td>3</td>
<td>157</td>
</tr>
</tbody>
</table>

Optimal level <110mg/dL

P = 0.01
Non-Obese Statin Children vs. Non-Obese Non-Statin Children

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Statin</th>
<th>Non-Statin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cholesterol</td>
<td>0.01</td>
<td>0.88</td>
</tr>
<tr>
<td>LDL</td>
<td>0.01</td>
<td>0.88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vascular Age Visit</th>
<th>Statin</th>
<th>Non-Statin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6 (67%)</td>
<td>7 (78%)</td>
</tr>
<tr>
<td>2</td>
<td>5 (56%)</td>
<td>7 (78%)</td>
</tr>
<tr>
<td>3</td>
<td>0 (0%)</td>
<td>2 (67%)</td>
</tr>
</tbody>
</table>

P=NS

Non-Obese Statin Children vs. Non-Obese Non-Statin Children
Conclusions

- Overtime, there was an emergence of a second disease i.e. obesity and obesity associated risk factors in the group of non obese dyslipidemic children.
- Although there was no improvement in CIMT, the proportion whose vascular age was similar to that of a race and sex matched 45 year old decreased over time.

We speculate that clinic based interventions, including the use of statins and its effect on the vasculature might have dampened the ill affects of the superimposed obesity associated vascular damage.

The emergence of obesity in this population is a concern.
Obese Children with Dyslipidemia

- Each child seen twice and 11 of 23 seen three times.

<table>
<thead>
<tr>
<th>Total Number of Children</th>
<th>Visit 1</th>
<th>Visit 2</th>
<th>Visit 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>23</td>
<td>23</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time Interval</th>
<th>10.1 ± 5.5 months</th>
<th>18.6 ± 3.1 months</th>
</tr>
</thead>
</table>

BMI

<table>
<thead>
<tr>
<th>BMI</th>
<th>Visit 1</th>
<th>Visit 2</th>
<th>Visit 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td>28.78 ± 4.42</td>
<td>29.28 ± 4.82</td>
<td>30.28 ± 5.25</td>
</tr>
<tr>
<td>BMI ≥ 95</td>
<td>23 (100%)</td>
<td>21 (91%)</td>
<td>8 (73%)</td>
</tr>
</tbody>
</table>

BMI z-score | Visit 1 | Visit 2 | Visit 3 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.14 ± 0.44</td>
<td>2.09 ± 0.41</td>
<td>2.06 ± 0.47</td>
<td></td>
</tr>
</tbody>
</table>

Systolic Blood Pressure (SBP mmHg)

<table>
<thead>
<tr>
<th>SBP</th>
<th>Visit 1</th>
<th>Visit 2</th>
<th>Visit 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBP</td>
<td>118 ± 11</td>
<td>117 ± 9</td>
<td>122 ± 7</td>
</tr>
<tr>
<td>SBP ≥95%</td>
<td>22%</td>
<td>26%</td>
<td>27%</td>
</tr>
</tbody>
</table>

P=NS P=0.03 P=NS
Total Cholesterol (mg/dl)

<table>
<thead>
<tr>
<th></th>
<th>Visit 1</th>
<th>Visit 2</th>
<th>Visit 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chol</td>
<td>210 ± 55</td>
<td>212 ± 56</td>
<td>210 ± 39</td>
</tr>
<tr>
<td>Chol ≥170</td>
<td>70%</td>
<td>83%</td>
<td>91%</td>
</tr>
</tbody>
</table>

- P=NS

Triglycerides (mg/dl)

<table>
<thead>
<tr>
<th></th>
<th>Visit 1</th>
<th>Visit 2</th>
<th>Visit 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigs</td>
<td>146 ± 86</td>
<td>154 ± 84</td>
<td>158 ± 118</td>
</tr>
<tr>
<td>Trigs ≥120</td>
<td>52%</td>
<td>65%</td>
<td>55%</td>
</tr>
</tbody>
</table>

- P=NS

HDL (mg/dl)

<table>
<thead>
<tr>
<th></th>
<th>Visit 1</th>
<th>Visit 2</th>
<th>Visit 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDL</td>
<td>42 ± 15</td>
<td>42 ± 12</td>
<td>43 ± 13</td>
</tr>
<tr>
<td>HDL <45</td>
<td>61%</td>
<td>70%</td>
<td>73%</td>
</tr>
</tbody>
</table>

- P=NS
Insulin (uIU/ml)

<table>
<thead>
<tr>
<th></th>
<th>Visit 1</th>
<th>Visit 2</th>
<th>Visit 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin</td>
<td>17 ± 5</td>
<td>16 ± 9</td>
<td>19 ± 16</td>
</tr>
<tr>
<td>Insulin ≥18</td>
<td>30%</td>
<td>22%</td>
<td>36%</td>
</tr>
</tbody>
</table>

P=NS

Risk Factors Score out of 7

<table>
<thead>
<tr>
<th></th>
<th>Visit 1</th>
<th>Visit 2</th>
<th>Visit 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score out of 7</td>
<td>3.6 ± 1.1</td>
<td>3.8 ± 1.2</td>
<td>3.7 ± 1.8</td>
</tr>
</tbody>
</table>

P=NS

Advanced Vascular Age

<table>
<thead>
<tr>
<th></th>
<th>Visit 1</th>
<th>Visit 2</th>
<th>Visit 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vascular Age ≥25°</td>
<td>18 (78%)</td>
<td>17 (74%)</td>
<td>16 (91%)</td>
</tr>
</tbody>
</table>
CIMT

<table>
<thead>
<tr>
<th></th>
<th>Visit 1</th>
<th>Visit 2</th>
<th>Visit 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean CIMT (mm)</td>
<td>0.49 ± 0.04</td>
<td>0.48 ± 0.03</td>
<td>0.49 ± 0.04</td>
</tr>
<tr>
<td>Max CIMT (mm)</td>
<td>0.57 ± 0.06</td>
<td>0.57 ± 0.05</td>
<td>0.58 ± 0.08</td>
</tr>
</tbody>
</table>

OBESE VS NON-OBESE

- Total Cholesterol
- HDL Cholesterol
- Triglycerides

Obese vs Non-obese
Obese vs Non-obese

Conclusion

- Decrease in percentage of children who were obese over time.
- No significant change in number or intensity of risk factors over time.
- No worsening of CIMT or vascular age over time.

How can we Improve?

- Resources.
- Compliance.
- Phone calls/closer follow up.
- Schools.
Therapeutic Life Style Changes

- Liquid calories vs. water.
- Breakfast (protein, good fat and fiber).
- Colorful foods (fruits and vegetables).
- Source of calcium (skim milk, low fat cheese).
- Screen time.
- Sleep time – 8 hours/day.

Therapeutic Life Style Changes

Exercise and Activity

- Family deal.
- Exercise 30 minutes at least every day.
- Positive emphasis on cardiovascular health. Avoid negative approach and labeling.
- Schools – Major influence in Diet and Activity.

Drug Therapy

- 8 - 10 years.
- LDL > 190 mg/dl or,
- LDL > 160 mg/dl associated with family history of premature coronary artery disease (<55 years of age) or child with 2 other risk factors (diabetes, hypertension, obesity, low HDL, smoking).
- Statins – studies short-term, approved by FDA for children.
Statins

- 35 to 40% reduction in LDL.
- Generally well tolerated.
- Need to monitor liver enzymes and muscle enzymes.
- Effect on growth and puberty – so far safe.
- Teratogenic effects – contraception for girls.

Usefulness of Intervention in Children?

Intervention in Children Reduces Risk Factors.
Intervention in Children Improves Their Vascular Health

- Few pediatric reports have described short-term, favorable changes in vascular function (de Jongh et al, Woo et al, Meyer et al) and structure (Wiegman et al, Meyer et al) after lifestyle alterations or statin therapy in children with atherosclerosis promoting risk factors.

Intervention in Children Changes Long Term Outcome

There will likely be no controlled trial comparing the effect of risk reduction beginning in childhood on the subsequent development of atherosclerotic heart disease.

But our data and other epidemiologic, observational, circumstantial data indicate that prevention of atherosclerotic disease should begin in the first decade of life.

Integrated CV Health Schedule

- Family History.
- Smoking.
- Diet.
- Growth.
- Lipids – Universal screen at 9-11 years.
- BP – Annual BP from 3 years.
- Activity – 1 hour Screen time ≤ 2 hours per day.
- Diabetes – Insulin at 9-11 years.
Children are our future

- Potential.
- Purpose.
- Passion.
- Perseverance.
- Patience.
- Protein, Color, Complex Carbs and Good Fats – Paleolithic Genome – Hunter Gatherer Diet.