Drug Interactions: Combinations That Can Kill Your Patients or "warnings"

Frank LoVecchio, DO, MPH, FACEP, FABMT
Medical Director, Banner Drug and Information Center
Research Director and Vice Chairman, Maricopa Medical Center,
Department of Emergency Medicine
Professor, University of AZ College Medicine
Introduction

- Common
 - 0.5-2.5% of hospitalized pts
- Only 1% clinically significant → fatal!
- Most are predictable and preventable
Definition of a Drug Interaction

The pharmacological or clinical response to the administration of a drug combination, different from that anticipated from the known effects of the two agents when given alone.

Tatro, Drug Interaction Facts 1992
Top 10 Particularly Dangerous Drug Interactions in Long Term Care

Recent studies have shown that adverse drug reactions (ADRs) are common among nursing home residents, and frequently go unrecognized or the symptoms attributed to another condition. Many ADRs are due to drug-drug interactions.

The occurrence of an interaction depends on many factors, including the inherent pharmacological properties of the drugs, the resident’s medical condition and presence of co-morbidities, the dose of the drugs, and the presence of other drugs.

The severity and clinical significance of the interactions vary from mild and clinically unimportant to severe and life-threatening. Some combinations of drugs cause interactions more often than others.

The likelihood of an interaction is also increased for drugs that are more commonly prescribed in nursing homes. While most residents take various combinations of drugs without experiencing interaction-related ADRs, they nonetheless have a risk which is higher for certain combinations as discussed above.
America's Top 10 Particularly Dangerous Drug Interactions in Long Term Care

<table>
<thead>
<tr>
<th>Warfarin</th>
<th>Warfarin</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSAIDs</td>
<td>Sulfa Drugs</td>
</tr>
<tr>
<td>Macrolides</td>
<td>Quinolones</td>
</tr>
<tr>
<td>Warfarin</td>
<td>Warfarin</td>
</tr>
<tr>
<td>Phenytoin</td>
<td>Ace Inhibitors</td>
</tr>
<tr>
<td>Ace Inhibitors</td>
<td>Potassium</td>
</tr>
<tr>
<td>Spironolactone</td>
<td>Supplements</td>
</tr>
<tr>
<td>Digoxin</td>
<td>Amiodarone</td>
</tr>
<tr>
<td>Theophylline</td>
<td>Quinolones</td>
</tr>
<tr>
<td>Verapamil</td>
<td></td>
</tr>
</tbody>
</table>
People don’t kill people, computers do

- Computerized physician order entry (CPOE) and decision support systems (DSS) can reduce certain types of error but often slow clinicians and may increase other types of error.

Acad Emerg Med. 2004 Nov;11(11):1135-41
Handler JA, et al
A 64 yr old male with a history of HTN, CAD, and stable angina became lightheaded and nauseated shortly after a dose of sildenafil (Viagra).

Medications: ASA, captopril, isosorbide dinitrate (Isordil)
With the breakthrough oral medication for erectile dysfunction

SUCCESS IS ONE SIMPLE STEP AWAY

Niagra

Cialis is here.
Sildenafil and Nitrates

- Released in March 1998
- Over 6 million Rx in first year
- 130 deaths reported to FDA, most cardiac
- Many cases of severe hypotension in pts taking nitrates \(\Rightarrow\) 16 deaths
Sildenafil and Nitrates
Mechanism of Interaction

- **Mechanism of Interaction**

- L-Arginine → NITRIC OXIDE
 - NO Synthase
 - Guanylate Cyclase
 - GTP → cGMP
 - Phosphodiesterase Type 5
 - 5’GMP

- **SILDENAFIL (Viagra)**
- **NITRATES**
 - Smooth muscle relaxation (also in vasculature)
 - Hypotension
 - Ischemia
 - Death
Pharmacodynamic Interactions

- The use of two agents which affect the same physiologic system
- Can be either synergistic or antagonistic
 - calcium channel blocker + beta blocker
 - furosemide + gentamicin
Pharmacokinetic Interactions

- Absorption
 - protein binding

- Distribution

- Metabolism
 - cytochrome p450

- Elimination
 - diuretics & lithium
Survey Says: History of epilepsy, rash and fever 5 days after dilantin

- The best agent to switch the patient to is?
 A. Valpraote
 B. Carbamazepine
 C. Phenobarbital
 D. Lamotrigine
Anticonvulsant Hypersensitivity Syndrome (AHS)

- Rare adverse event (1/1,000 to 1/10,000) characterized by fever, rash, and internal organ involvement (liver, kidney, CNS, lungs), usually with lymphadenopathy,

- 1-8 weeks after drug initiation

- It is not dose-related and can recur if the drug is re-started
Figure 2. Similarities in the structure of phenytoin (A), phenobarbital (B), carbamazepine (C), and felbamate (D).
AHS: Clinical Findings

- Fever
- Rash, exfoliative suggests Stevens-Johnson Syndrome or Toxic Epidermal Necrolysis
- Lymphadenopathy is seen in 2/3 of patients, has been associated with “pseudolymphoma”
- Liver involvement: mild transaminitis to fulminant hepatic necrosis
- Other findings in AHS include eosinophilia, hematologic abnormalities, and nephritis
- Less common findings include myalgias, arthralgias, rhabdomyolysis, pneumonitis, and thyroiditis, which results in hypothyroidism approximately 2 months after presentation.
Treatment of AHS

- Discontinue offending drug and supportive care
- The use of systemic corticosteroids, IV immunoglobulins, and antihistamines is controversial
- Due to the high degree of cross-reactivity among the aromatic anticonvulsants, patients should not be switched to another medication in this class!!
- Family members of patients with AHS should be warned, and may want to undergo testing prior to starting any of the drugs in this class
30 year old on Venlafaxine (Effexor) complains of severe ankle pain after a trauma. Obvious fracture is noted with good pulses. She requests analgesics. Which is potentially most harmful?

A. Ibuprofen
B. Meperidine
C. Morphine
D. Fentanyl
Serotonin Syndrome

- Acute increase in serotonin at the 5HT$_{1A}$ receptor
- Produced by
 - 2 serotonergic drugs simultaneously
 - initiating serotonergic drug
 - increased dosing
 - overdose
Serotonin Syndrome
Medications Involved

- MAOI’s, TCA’s, SSRI’s
- Venlafaxine, trazodone, nefazodone
- Meperidine, dextromethorphan
- Sumatriptan
- “Ecstasy”
- Lithium
Changing Antidepressants

- Stop MAOI
 - start SSRI in 2 weeks
- Stop SSRI
 - start MAOI in 2 weeks
 - if fluoxetine then 4 weeks
Spectrum of Clinical Findings

- Akathisia
- Altered mental status
- Clonus (sustained)
- Hyperthermia

Mild symptoms

- Tremor
- Clonus (inducible)
- Muscular hypertonicity

Life-threatening toxicity

Serotonin Syndrome
Clinical Presentation

- **Cognitive and behavioral**
 - dizziness, restlessness, agitation, delirium, seizures, coma

- **Autonomic nervous system**
 - diaphoresis, ↑ HR, ↑ BP, ↑ T

- **Neuromuscular**
 - hyperreflexia, muscle stiffness, rigidity
 - lower extremities

Serotonin Syndrome

Treatment

- Stop all serotonergic agents
- Cyproheptadine (Periactin) 4-8 mg PO
- Benzodiazepines - titrate to effect
- Aggressive sedation/paralysis/cooling for critically ill but is rarely needed
A Few Other Causes of Drug-Induced Heat Illnesses

<table>
<thead>
<tr>
<th></th>
<th>ΔMS</th>
<th>Hot</th>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>MH</td>
<td>✓</td>
<td>✓</td>
<td>Post-anesthesia</td>
</tr>
<tr>
<td>NMS</td>
<td>✓</td>
<td>✓</td>
<td>Dopamine-blockers</td>
</tr>
<tr>
<td>SS</td>
<td>✓</td>
<td>✓</td>
<td>SSRI’s “plus”</td>
</tr>
<tr>
<td>ACS</td>
<td>✓</td>
<td>✓</td>
<td>Dry skin, etc</td>
</tr>
<tr>
<td>ST</td>
<td>✓</td>
<td>✓</td>
<td>Moist skin</td>
</tr>
</tbody>
</table>
FDA issues warning about CNS toxicity in patients taking antibacterial agent Zyvox with certain psychiatric drugs

July 27, 2011

ST LOUIS (MD Consult) - On July 26, 2011, the US Food and Drug Administration (FDA) issued a safety notice concerning use of the anti-infective agent Zyvox (linezolid) with serotoninergic psychiatric medication. The FDA has received reports of serious central nervous system (CNS) reactions occurring when such medications are taken together. Some deaths were reported.

Although the exact mechanism of this drug interaction is unknown, linezolid inhibits the action of monoamine oxidase A, an enzyme responsible for breaking down serotonin in the brain. It is believed that to patients receiving serotoninergic psychiatric medications, high levels of serotonin can accumulate in the brain, leading to the development of serotonin syndrome. Signs and symptoms of serotonin syndrome changes (confusion, hyperactivity, memory problems), muscle twitching, hyperhidrosis, shivering or shaking, diaphoresis, trouble with coordination, and/or fever.

The FDA believes that some healthcare professionals and patients may not realize that linezolid has monoamine oxidase inhibitor properties. Linezolid should generally not be given to patients taking serotonergic medications. However, treatment with linezolid may be necessary in the presence of certain serious conditions including vancomycin-resistant Enterococcus faecium infections, and nosocomial pneumonia and complicated structure infections, including cases caused by methicillin-resistant Staphylococcus aureus.

In emergency situations requiring urgent treatment with linezolid, the availability of alternative interventions should be considered and the benefit of linezolid treatment should be weighed against the risk of linezolid. If linezolid must be administered to a patient receiving a serotonergic drug, the serotonergic drug must be immediately stopped and the patient should be closely monitored for emergent symptoms of CNS toxicity within 4 hours after the last dose of linezolid, whichever comes first.

In non-emergency situations when non-urgent treatment with linezolid is contemplated and planned, the serotonergic psychiatric medication should be stopped to allow its activity in the brain to dissipate. Psychiatric drugs should be stopped at least 2 weeks in advance of linezolid treatment. Fluoxetine (Prozac), which has a longer half-life compared with similar drugs, should be stopped at least 5 weeks in advance of initiation of psychiatric medication. The serotonergic psychiatric medication may be resumed 24 hours after the last dose of linezolid.

Treatment with serotoninergic psychiatric medications should not be initiated in a patient who is receiving linezolid, but may be started 24 hours after the last dose of linezolid.

Patients should be educated to contact a health care professional immediately if they experience any symptoms of serotonin syndrome or CNS toxicity while taking serotoninergic psychiatric medications.

The following tables contain lists of serotoninergic psychiatric medications:

Selective Serotonin Reuptake Inhibitors (SSRIs)

<table>
<thead>
<tr>
<th>Generic name</th>
<th>Found in Brand name(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>paroxetine</td>
<td>Paxil, Paxil CR, Pexeva</td>
</tr>
<tr>
<td>fluvoxamine</td>
<td>Luvox, Luvox CR</td>
</tr>
<tr>
<td>fluoxetine</td>
<td>Prozac, Sarafem, Symbyax</td>
</tr>
</tbody>
</table>
Survey Says: Which of the following is the most common side-effect of Neuroleptics / Antipsychotics?

a. Akathisia
b. Dystonia
c. Malignant Hyperthermia
d. Neuroleptic Malignant Syndrome
Antiemetics in the ED: a randomized controlled trial comparing 3 common agents

- This randomized, placebo-controlled, double-blind trial compares 1.25 mg droperidol, 10 mg metoclopramide, 10 mg prochlorperazine, and saline placebo.
- Droperidol (-54.5 mm) was significantly better than metoclopramide (-40.2 mm) or prochlorperazine (-40.5 mm) at reducing nausea at 30 minutes (P = .04).
- There were no significant differences in rescue medication or patient satisfaction; however, droperidol had significantly higher akathisia (71.4% vs 23.5%) at 24-hour follow-up.

24 year old on seldane for URI symptoms. You diagnosis sinusitis. You agree to prescribe and antibiotic. Which is the best choice?

A. Azithromycin
B. Erythromycin
C. Ofloxacin
D. Flagyl
cc: Palpitations

- 24 yr old female returns now and complains of palpitations and dizziness. Recently diagnosed with bronchitis and treated with erythromycin.
- Pt also self-treating with OTC’s acetaminophen and Propulusid (Cisapride)
cc: Palpitations

- Vitals, physical examination unremarkable
- Hx of palpitations >> monitor
FDA Withdrawals/Restrictions Due to Prolongation of the QT Interval

- Withdrawn
 - Terfenadine (Seldane) - 1998
 - Astemizole (Hismanal) - 1999
 - Grepafloxin (Raxar) – 1999

- “Black box”
 - Cisapride (Propulsid) - 2000
 - Levomethadyl (Orlaam) - 2001
 - Droperidol (Inapsine) - 2002
The QT Interval

- male < 450 msec
- female < 460 msec
Early after-depolarization (EAD) interrupting phase 3 repolarization. Under some conditions, a triggered beat can arise from an EAD (black arrow, right)
Pharmacokinetic Interaction

- terfenadine carboxylate (active)
- desmethylastemizole (inactive)
- (?) (inactive)
- terfenadine
- astemizole
- cisapride
- CYP3A4
- potassium channels
- QT prolongation
- torsades
- erythromycin
- ketoconazole
- verapamil

Woosley, JAMA 269;1532-6, 1993
Available Drugs Associated w/ QT prolongation

- Disopyramide, procainamide, quinidine, sotalol, bepridil, amiodarone
- Erythromycin, clarithromycin, sparfloxacin
- Droperidol, haloperidol, mesoridazine, thioridazine, chlorpromazine, quetiapine
- Methadone
Drugs associated with prolonged QTC and Torsades

- Amantadine
- Arsenic
- Astemizole
- Bepridil
- Butyrophenones
- Chloral hydrate
- Chloroquine
- Cisapride
- Citalopram
- Emetine
- Fluoride (secondary to hypocalcemia)
- Fluoxetine
- Ketoconazole
- Erythromycin
- Mercury (organic)
- Organophosphates
- Pentamidine
- Phenothiazines (particularly thioridazine, mesoridazine)

- Phosphorus
- Pimozide
- Scorpion venom
- Terfenadine
- Tetracyclic antidepressants
- Tricyclic antidepressants
- Disopyramide
- Procainamide
- Quinidine
- Encainide
- Flecainide
- Lorcainide
- Moricizine
- Propafenone
- Amiodarone
- Bretylium
- N-Acetylprocainamide
- Sotalol

XXXX QTC.COM
Atypical Antipsychotic Drugs and the Risk of Sudden Cardiac Death

Wayne A. Ray, Ph.D., Cecilia P. Chung, M.D., M.P.H., Katherine T. Murray, M.D., Kathi Hall, B.S., and C. Michael Stein, M.B., Ch.B.

ABSTRACT

BACKGROUND
Users of typical antipsychotic drugs have an increased risk of serious ventricular arrhythmias and sudden cardiac death. However, less is known regarding the cardiac safety of the atypical antipsychotic drugs, which have largely replaced the older agents in clinical practice.

METHODS
We calculated the adjusted incidence of sudden cardiac death among current users of antipsychotic drugs in a retrospective cohort study of Medicaid enrollees in Tennessee. The primary analysis included 44,218 and 46,089 baseline users of single typical and atypical drugs, respectively, and 186,600 matched nonusers of antipsychotic drugs. To assess residual confounding related to factors associated with the use of antipsychotic drugs, we performed a secondary analysis of users of antipsychotic drugs who had no baseline diagnosis of schizophrenia or related Psychoses and with whom nonusers were matched according to propensity score (i.e., the predicted probability that they would be users of antipsychotic drugs).

RESULTS
Current users of typical and of atypical antipsychotic drugs had higher rates of sudden cardiac death than did nonusers of antipsychotic drugs, with adjusted incidence-rate ratios of 1.99 (95% confidence interval 1.68 to 2.34) and 2.26 (95% CI, 1.88 to 2.72), respectively. The incidence-rate ratio for users of atypical antipsychotic drugs as compared with users of typical antipsychotic drugs was 1.14 (95% CI, 0.93 to 1.39). Former users of antipsychotic drugs had no significantly increased risk (incidence-rate ratio, 1.13; 95% CI, 0.98 to 1.30). For both classes of drugs, the risk for current users increased significantly with an increasing dose. Among users of typical antipsychotic drugs, the incidence-rate ratios increased from 1.31 (95% CI, 0.97 to 1.77) for those taking low doses to 2.42 (95% CI, 1.91 to 3.06) for those taking high doses (P = 0.001). Among users of atypical agents, the incidence-rate ratios increased from 1.59 (95% CI, 1.03 to 2.46) for those taking low doses to 2.86 (95% CI, 2.25 to 3.65) for those taking high doses (P < 0.01). The findings were similar in the cohort that was matched for propensity score.

CONCLUSIONS
Current users of typical and of atypical antipsychotic drugs had a similar, dose-related increased risk of sudden cardiac death.
Atypical Antipsychotic Drugs and the Risk of Sudden Cardiac Death

Table 2. Adjusted Incidence-Rate Ratios for Sudden Cardiac Death, According to Use or Nonuse of Antipsychotic Drugs.

<table>
<thead>
<tr>
<th>User Status</th>
<th>No. of Person-Years</th>
<th>No. of Sudden Deaths</th>
<th>Incidence-Rate Ratio (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonuser</td>
<td>624,591</td>
<td>895</td>
<td>Reference group</td>
<td></td>
</tr>
<tr>
<td>Former user</td>
<td>189,981</td>
<td>311</td>
<td>1.13 (0.98–1.30)</td>
<td>0.08</td>
</tr>
<tr>
<td>Current user‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical agent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any</td>
<td>86,735</td>
<td>255</td>
<td>1.99 (1.68–2.34)</td>
<td><0.001</td>
</tr>
<tr>
<td>Haloperidol</td>
<td>21,728</td>
<td>58</td>
<td>1.61 (1.16–2.24)</td>
<td>0.005</td>
</tr>
<tr>
<td>Thioridazine</td>
<td>15,715</td>
<td>65</td>
<td>3.19 (2.41–4.21)</td>
<td><0.001</td>
</tr>
<tr>
<td>Atypical agent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any</td>
<td>79,589</td>
<td>223</td>
<td>2.26 (1.88–2.72)</td>
<td><0.001</td>
</tr>
<tr>
<td>Clozapine</td>
<td>4,654</td>
<td>19</td>
<td>3.67 (1.94–6.94)</td>
<td><0.001</td>
</tr>
<tr>
<td>Olanzapine</td>
<td>27,257</td>
<td>75</td>
<td>2.04 (1.52–2.74)</td>
<td><0.001</td>
</tr>
<tr>
<td>Quetiapine</td>
<td>17,355</td>
<td>40</td>
<td>1.88 (1.30–2.71)</td>
<td><0.001</td>
</tr>
<tr>
<td>Risperidone</td>
<td>24,589</td>
<td>85</td>
<td>2.91 (2.26–3.76)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

The total includes 45,301 person-years and 124 deaths for indeterminate use of antipsychotic drugs, as well as 15,281 person-years and 27 additional deaths for indeterminate use of antipsychotic drugs in conjunction with use of typical antipsychotic drugs.
FDA examining risk of cardiovascular death with use of antibiotic Zithromax

May 18, 2012

ST LOUIS (MD Consult) - On May 17, 2012, the US Food and Drug Administration (FDA) issued a statement concerning the safety of the macrolide antibacterial agent Zithromax (azithromycin). This statement was prompted by the agency’s preliminary review of a study published in the May 17, 2012, issue of The New England Journal of Medicine regarding the cardiovascular safety concerns of azithromycin.

The study compared the risks of cardiovascular death in patients treated with azithromycin (Zithromax), amoxicillin, ciprofloxacin (Cipro), levofloxacin (Levaquin), and an increase in cardiovascular deaths, and in the risk of death from any cause, in persons treated with a 5-day course of azithromycin compared with persons treated with placebo. The study found that the cardiovascular death associated with levofloxacin treatment were similar to those associated with azithromycin treatment.

The use of macrolides has previously been associated with cardiovascular effects, specifically, prolongation of the QT-interval. Prolongation of the QT-interval can lead to the use of other macrolide antibacterial drugs, such as clarithromycin (Biaxin) and erythromycin, regarding the potential for cardiovascular death.

The Warnings and Precautions section of the drug label for the azithromycin extended-release oral suspension formulation was revised in March 2012 to include new warnings that appear to be low. The FDA is in the process of updating risk information in the drug labels for additional macrolide antibacterial drugs.

The FDA plans to communicate any new information on azithromycin and the potential risk of QT-interval prolongation after it has completed its review. The FDA is for QT-interval prolongation and cardiac arrhythmias when prescribing or administering antibacterial drugs.

Safety Notices

FDA ups warnings about prolonged QT intervals in patients taking antiemetic Zofran

September 15, 2011

ST LOUIS (MD Consult) - On September 15, 2011, the US Food and Drug Administration (FDA) issued a safety notice concerning use of the antiemetic Zofran (ondansetron) for possible increased risk of cardiac electrical disturbances. The FDA previously noted cardiovascular safety concerns that suggested that use of Zofran could cause fatal arrhythmia known as Torsade de Pointes. The agency is now adding a new warning to avoid the use of ondansetron in patients with congenital long QT syndrome experiencing Torsade de Pointes.

Zofran is used prevent nausea and vomiting related to cancer chemotherapy, radiation therapy, and surgery.

In certain patients receiving Zofran, electrocardiographic monitoring is recommended. Such patients include those with electrolyte abnormalities (eg, hypokalemia) and in patients taking concomitant medications that prolong the QT interval. Patients should be advised to contact a health care professional immediately if they experience arrhythmia while taking Zofran.

The FDA has reviewed all available information and is making interim changes to the ondansetron drug labels. The manufacturer of Zofran (GlaxoSmithKline) is being potential for the drug to prolong QT intervals.
Potent Inhibitors of CYP3A

- Erythromycin, clarithromycin, ciprofloxacin
- Azole antifungals (ketoconazole, fluconazole)
- Diltiazem, verapamil
- SSRI’s (footnote), nefazodone
- Protease inhibitors (ritonovir, indinavir)
- Cimetidine (not as potent but very common)
Time Plasma Concentration Curve

Plasma Felodipine Concentration (nmol/liter)

Grapefruit juice

Water

Common Drugs Metabolized Significantly/Exclusively by CYP3

- **Antidepressants**
 - Amitriptyline, venlafaxine imipramine

- **Calcium channel blockers**

- **Protease inhibitors**

- **Cyclosporine, tacrolimus**

- **Midazolam**

Your next patient presents on Dipyridamole (Persantine®) and has SVT. The best drug at this time is?

A. Adenosine 6 mg
B. Adenosine 12 mg
C. Adenosine 3 mg
Adenosine drug Interactions

- Carbamazepine may increase heart block.
- Dipyridamole potentiates effects of adenosine; reduce dose of adenosine.
- Theophylline and caffeine (methylxanthines) antagonize adenosine's effects; may require increased dose of adenosine.
Oral Erythromycin and the Risk of Sudden Death from Cardiac Causes

ABSTRACT

BACKGROUND

Oral erythromycin prolongs cardiac repolarization and is associated with case reports of torsades de pointes. Because erythromycin is extensively metabolized by cytochrome P-450 3A (CYP3A) isozymes, commonly used medications that inhibit the effects of CYP3A may increase plasma erythromycin concentrations, thereby increasing the risk of ventricular arrhythmias and sudden death. We studied the association between the use of erythromycin and the risk of sudden death from cardiac causes and whether this risk was increased with the concurrent use of strong inhibitors of CYP3A.

Figure 1. The Incidence-Rate Ratio for Sudden Death from Cardiac Causes According to the Current Use of the Study Antibiotic Medications and CYP3A Inhibitors.

The bars indicate 95 percent confidence intervals. The reference group for the incidence-rate ratio associated with the concurrent use of erythromycin and CYP3A inhibitors and with the use of CYP3A inhibitors alone is the patients who used none of these medications; that for the incidence-rate ratio associated with the use of erythromycin and use of amoxicillin, regardless of the use of CYP3A inhibitors, is the patients who used neither of these antibiotic medications.
Inducers of CYP450

- Increase the metabolism of drugs
 - subtherapeutic dosing
- Lipid soluble
- Gradual onset - days to weeks
- If stopped, the effect will disappear
Inducers of CYP450

- Rifampin, isoniazid
- Phenobarbital, phenytoin, carbamazepine
- Cigarette smoke (PAH’s)
- Chronic ethanol
Impaired morning-after alertness concerns prompt labeling update for insomnia products containing zolpidem

January 10, 2013

ST LOUIS (MD Consult) - On January 10, 2012, the US Food and Drug Administration (FDA) issued a safety announcement concerning the insomnia drug zolpidem. The FDA now recommends that the bedtime dose be lowered because new data show that blood levels in some patients may be high enough the morning after use to impair activities that require alertness, including driving. Zolpidem is marketed in generic form and under the brand names Ambien, Ambien CR, Edluar, and Zolpimist.

The FDA urges healthcare professionals to caution all patients who use these zolpidem products about the risks of next-morning impairment for activities that require complete mental alertness, including driving. For zolpidem products, data show the risk for next-morning impairment is highest for patients taking the extended-release forms of these drugs (Ambien CR and generics). Women appear to be more susceptible to this risk because they eliminate zolpidem from their bodies more slowly than men.

Because use of lower doses zolpidem will result in lower blood levels in the morning, the FDA is requiring the manufacturers of Ambien, Ambien CR, Edluar, and Zolpimist to lower the recommended dose. The recommended dose of zolpidem for women should be lowered from 10 mg to 5 mg for immediate-release products (Ambien, Edluar, and Zolpimist) and from 12.5 mg to 6.25 mg for extended-release products (Ambien CR). For men, the FDA is requiring that labeling recommend that healthcare professionals consider prescribing the lower doses of zolpidem (i.e., 5 mg for immediate-release products and 6.25 mg for extended-release products).

The drug labeling for immediate-release products should also include a statement that, for both men and women, the 5 mg dose could be increased to 10 mg if needed, but the higher dose is more likely to impair next-morning driving and other activities that require full alertness. For extended-release products, the drug labeling should include a statement that, for both men and women, the 6.25 mg dose can be increased to 12.5 mg if needed, but the higher dose is more likely to impair next-morning driving and other activities that require full alertness. Prescribers should select the lowest dose that treats the patient’s symptoms.

The recommended doses of Intermezzo, a lower-dose zolpidem product approved for middle-of-the-night awakenings, are not changing. At the time of Intermezzo’s approval in November 2011, the label already recommended a lower dosage for women than for men.
Your next patient has peaked t waves and a potassium of 6 meq/L. You administer calcium and they die shortly after.

Which drug were they on?

- A. Digitalis
- B. Verapamil
- C. Potassium supplements
Bufo Abuse

A toxic toad gets licked, boiled, teed up and tanned

Plump, greenish-yellow and pebbly in texture, it is not much to look at. It can be nuisance, too, poisoning dogs and squishing noisily under automobile tires. But Bufo Marinus, also known as the cane toad, has become an international celebrity of late, inspiring drug-war hysteria in the U.S. and trade talks in the Far East. Here is its tale, warts and all.
Digoxin Toxicity

Drug Interactions:

- Quinidine
- Verapamil
- Diltiazem
- Amiodarone
- Spironolactone
- Macrolides and tetracyclines (reversal of inactivation of digoxin by enteric bacterium *Eubacterium lentum*)
67 yr old female w/ multiple medical problems sent in by her neurologist complaining of lightheadedness and a bruise on her thigh.

Medications: glyburide, nifedipine, enalapril, aspirin, timolol, warfarin, cimetidine, colace.
cc: Bruising

- Gen: pale, slightly diaphoretic female
- Vitals: HR 105 irregular, BP 120/75
- Skin: several ecchymosis on legs w/ largest 7 x 10 x 4 cm on L thigh
- Abd: nontender, melanic stool
cc: Bruising

- Laboratory
 - hemoglobin = 8 g/dL (baseline 13 g/dL)
 - platelets = 280,000
 - PT > 50 sec
Warfarin

- Frequently involved in drug interactions
- Low therapeutic index
- Bleeding is a significant complication

Holbrook et al. Arch Int Med 165:1095-1106, 2005
Warfarin
Mechanism of Interaction

- Altered CYP metabolism (1A2, 2E1, 3A4)
 - inhibited, induced
- Drug synergism
 - heparin, NSAIDS, ticlodipine
- Drug antagonism
 - high vit K foods, enteral nutrition
Vitamin K rich foods

Vitamin K Quinol

Inactive Factors
II, VII, IX, X
Proteins S and C

Active Factors
II, VII, IX, X
Proteins S and C

Vitamin K 2,3-Epoxide

Vitamin K Quinone

warfarin

Vitamin K Quinone Reductase

Vitamin K 2,3-Epoxide Reductase

NAD(P)⁺

NAD(P)H
Because the patient was started on warfarin a few weeks prior by her cardiologist for atrial fibrillation, her family physician began cimetidine to prevent GI bleeding.
FDA review of bleeding risks associated with Pradaxa allays some earlier concerns

November 5, 2012

ST LOUIS (MD Consult) - On November 2, 2012, the US Food and Drug Administration (FDA) announced results of an investigation concerning bleeding risks associated with the approval of Pradaxa, the FDA received a large number of post-marketing reports of bleeding among Pradaxa users. Prompted by these reports, the FDA decide intracranial hemorrhage for new users of Pradaxa, compared with new users of warfarin.

The risk assessment was performed using insurance claims and administrative data from the FDA’s Mini-Sentinel pilot of the Sentinel Initiative. The Sentinel Initiative pre-existing electronic healthcare data from multiple sources as a means of assessing the safety of approved drugs and other medical products. The results of the assessment indicate that bleeding rates associated with new use of Pradaxa do not appear to be higher than bleeding rates associated with new use of warfarin, which is considered the gold standard for management of atrial fibrillation.

The FDA has not changed its recommendations regarding Pradaxa. Health care professionals who prescribe Pradaxa should carefully follow the dosing recommendations to reduce the risk of bleeding. Patients should be made aware of the signs and symptoms of bleeding, and should be instructed about concerns that require medical attention.

The FDA is continuing to evaluate multiple sources of data in the ongoing safety review of this issue. As part of this ongoing review, the FDA is conducting 2 additional Sentinel data. In addition, the FDA continues to monitor post-market reports for evidence of inappropriate dosing, use of interacting drugs, and other clinical factors.
FDA issues safety update on risk of cardiovascular events with use of smoking cessation drug Chantix

December 12, 2012

ST LOUIS (MD Consult) - On December 12, 2012, the US Food and Drug Administration (FDA) announced results of a meta-analysis that was performed to further study drug Chantix (varenicline). Because of earlier concerns about the drug’s cardiovascular safety, the FDA required Pfizer, the manufacturer of the drug, to perform this review.

A higher occurrence of major adverse cardiovascular events (a combined outcome of cardiovascular-related death, nonfatal myocardial infarction, and nonfatal stroke) was noted in patients assigned to Chantix compared to those assigned to placebo. These events were uncommon in both the Chantix and placebo groups, and the increased risk was not statistically significant. However, the data were analyzed for all patients, regardless of whether they were taking Chantix or not, which makes it seem more likely that it is related to the drug and not purely a chance finding.

It should be noted that the incidence of cardiovascular mortality and all-cause mortality was lower in the Chantix group compared with the placebo group, though this finding was not statistically significant.

Patients receiving Chantix should be advised to contact their health care professional if they experience new or worsening symptoms of cardiovascular disease, such as chest pain, shortness of breath, or sudden onset of weakness, numbness, or difficulty speaking.

Health care professionals are advised to weigh the risks of Chantix against the benefits of its use. It is important to note that smoking is a major risk factor for cardiovascular disease, and patients should be encouraged to quit smoking and abstain from it for as long as 1 year. The health benefits of quitting smoking are immediate and substantial.
Case of Big Girl Blue

- A patient presents with a laceration to her scalp. No LOC. You administer Lidocaine with epinephrine and are called to the room.
- She is complaining of dizziness, headache, and dyspnea. The triage RN calls a medical alert because the patient is obviously cyanotic.
- In the resuscitation room, you find an alert patient with: BP 120/50 P 120 R24 T99 pulse ox 85% (on 70% FIO₂ by mask) and this appearance
Blue Lady

- What’s going on?
 - A. pulmonary embolism
 - B. aortic dissection
 - C. Cyanide poisoning
 - D. Methemoglobinemia
 - E. pneumothorax
Methemoglobinemia

- Cyanosis in the setting of adequate oxygen delivery and a pulse oximeter ~ mid-80% range is suggestive of methemoglobinemia (oxidized hemoglobin)
- Commonly occurring from excessive exposure to oxidizing agents, such as benzocaine, dapsone, nitrobenzene;
- G6PD deficiency – and more frequently associated with significant hemolysis.
- Rx is administration of oxygen and methylene blue
 - Methylene blue will not be effective and will induce hemolysis in those with G6PD deficiency
High Risk Drugs

- Warfarin
- Theophylline
- Cyclosporine
- MAOI’s
- Lithium
- Digoxin

- Frequently prescribed
- Significant toxicity
- Low therapeutic window
- One major route of elimination
HOME MEDICATIONS LIST

<table>
<thead>
<tr>
<th>MEDICATIONS</th>
<th>JAN.</th>
<th>FEB.</th>
<th>MAR.</th>
<th>APR.</th>
<th>MAY</th>
<th>JUNE</th>
<th>JULY</th>
<th>AUG.</th>
<th>SEPT.</th>
<th>OCT.</th>
<th>NOV.</th>
<th>DEC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procardia 75 mg bid</td>
<td></td>
</tr>
<tr>
<td>Capoten 50 mg bid</td>
<td></td>
</tr>
<tr>
<td>Plavix 75 mg qd</td>
<td></td>
</tr>
<tr>
<td>Propranolol 40 mg qd</td>
<td></td>
</tr>
<tr>
<td>Percodan 7.5 mg PO bid</td>
<td></td>
</tr>
<tr>
<td>Tegretol 1600 mg PO qd</td>
<td></td>
</tr>
<tr>
<td>Synthroid 75 mg qd</td>
<td></td>
</tr>
<tr>
<td>Trendamine 75 mg qd</td>
<td></td>
</tr>
<tr>
<td>Captopril 50 mg TID</td>
<td></td>
</tr>
<tr>
<td>Lignocaine 10 mg qd</td>
<td></td>
</tr>
<tr>
<td>Diclofenac 50 mg qd</td>
<td></td>
</tr>
<tr>
<td>Bexkin 5 mg 670</td>
<td></td>
</tr>
<tr>
<td>Diclofenac 100 mg bid</td>
<td></td>
</tr>
<tr>
<td>Restoral 30 mg qn</td>
<td></td>
</tr>
<tr>
<td>Clarinex 10 mg daily</td>
<td></td>
</tr>
<tr>
<td>Clarinex 10 mg daily</td>
<td></td>
</tr>
</tbody>
</table>

Signature

- January
- February
- March
- April
- May
- June
- July
- August
- September
- October
- November
- December
High Risk Patients

- Elderly
 - altered metabolism, multiple medications
- Complex medical hx/multiple MD’s
- Specific medical conditions
 - HIV/AIDS
 - transplant
HIV + Patient

- 5-20% incidence
 - multiple meds
 - meds w/ high interaction potential
 - meds w/ significant toxicity (risk/benefit)
 - MD’s unfamiliar w/ meds
Pharmacodynamic

- **Bone marrow suppression**
 - ganciclovir, TMP-SMZ, zidovudine
- **Peripheral neuropathy**
 - isoniazid, didanosine (ddI), stavudine, zalcitabine
- **Pancreatitis**
 - didanosine (ddI), pentamidine
Pharmacokinetic

- Protease inhibitors (inhibitors)
- Antifungals (inhibitors)
- Antituberculous (inducers)
- Anticonvulsants (inducers)
St Johns Wort

- Depression
- CYP inhibitor
- MAO inhibitor
- Serotonin syndrome
Ginko Biloba

- Dementia
- Hemorrhage
 - warfarin, aspirin, rofecoxib
Recognizing Drug/Drug Interactions

- Obtain complete medication history
- Identify high risk patients
- Identify high risk drugs
 - QT prolongers
- Identify inhibitors/inducers of CYP
My Rules

1. Limit the total number of drugs, dose and duration (The more problems, the more problems)
2. Extremes of age deserve caution
3. If you are giving IV contrast, check medications and hydrate, consider bicarbonate
4. Never use Meperidine
5. Consider Ondansetron (now low dose)
6. Love P450
7. Know high risk drugs
8. If in doubt avoid, succinylcholine
9. If in doubt, use benzo’s
10. Consider help prn
Recent References