We are not alone

- 2016: 1st evidence of menstruation in a rodent!
 - Not to be confused with estrous cycles in domesticated animals
 - Spiny mouse Acomys cahirinus 8 day cycle with 3 day menses
 - Joins 78 other higher order primates
 - 4 bat species
 - Elephant shrew (actually not a rodent)
 - That’s <2% of all mammals
Summary

• Understanding Reproductive hormones thru the lifecycle
 • Focus on Estrogen, Progesterone, receptors, and target organs
 • Normal patterns of hormone cycling provide reproductive efficiency.
 • Abnormal patterns may lead to inefficiency and disease
 • Use for menopausal sxs control
Human reproductive hormones

- “Estrogens” (defined here as a molecule that binds to Estrogen Receptors) are found in significant amount and diversity in nature, plastics, etc

- Pro-gest(ation)erone. A vertebrate hormone

- “Progestin” is the global name for all progestational compounds, natural or synthetic

- Bind to PRs, ARs and other steroid receptors
Menarche

• Start this discussion with menarche

• Regulation of cycling hormones takes some time
 • Months to years along with breast and bone growth
 • Irregularity of ovulation
 • Leads to irregular menses
 • Poor but not absent reproductive capability
Reproductive Maturity

- Regular ovulation cycle
 - Start each cycle on cycle day 1: first day of menses
 - FSH already rising due to fall of hormones from the prior failed cycle. Max to about 15 pg/ml
 - Estradiol at its lowest level
 - 60-100pg/ml
 - Progesterone nearly absent
Follicle phase

- FSH stimulates many follicles
- Rapid increase in estradiol suppresses FSH to a few pg/ml
- A single (usually) follicle becomes dominant producing more E2
 - up to 400-600pg/ml
 - One ovary (follicle) does all the work while the other(s) is suppressed.
- Ovulation: Release of the egg near CD14
Follicle phase

• Meanwhile, the endometrium is growing: “Proliferative”

• Wall thickens from a few mm after menses to 4-6mm

• Cervical mucous becomes watery and copious, perfect for sperm transport

 • High pH 8 just like semen

 • Provides access for sperm to the upper reproductive tract for the last 4-5 days prior to ovulation
Luteal phase

• Starts with ovulation
 • Some follicle cells travel with the egg looking for sperm
 • The rest transform rapidly into a complex with a robust blood supply: The corpus luteum (not a “cyst”)
 • “Yellow body” known since antiquity
 • Role in fertility deduced in mid 20th C
• High levels of Progesterone from the CL: 50-100 x E2
Luteal phase cervix

- Progesterone
 - Shuts down cervical mucous production and hydration to avoid further sperm transport
 - No fertility after ovulation so no need for further motile foreign bodies roaming around
 - Like trying to swim in the Rillito r.
Luteal phase endometrium

- Decidualization
- Progesterone suppresses estrogen receptors
 - decreases further proliferation
- Endometrium thickens due to fluid production, sugars, etc ready for implantation
Pregnancy and lactation

• Reproductive success!

• CL (maintained by hCG) required for first trimester until the placenta is large enough to provide enough pregnancy hormones

• CL then resolves and both ovaries stay suppressed for the rest of pregnancy and through lactation due to Prolactin
Lactation

• Amenorrhea also continues due to hyperprolactinemia of nursing suppressing FSH

• Low E2: warmth, wakefulness, dyspareunia, etc (familiar?)

• Once Prolactin suppression ends, FSH rises generating a new ovulation cycle and hopefully another pregnancy.

• Given 9mo + a year or two of lactation, starting age 15 and ending age 45, there could be 10 or more pregnancies

• Ovarian and endometrial suppression are normal
Menopause

- Skipping over the “peri”-menopausal transition for now

- Not the absence of eggs but the absence of follicles receptive to FSH: Very low E2 levels

- Defined clinically as > 12 months without spontaneous menses
 - Confusion: Mirena, DMPA, OC
 - Confusion with Ablation, hysterectomy: supracervical hysterectomy, “partial hysterectomy”, etc
So what can go wrong?

- Infertility and bleeding disorders are common
 - Ovulation disorders
 - Physical issues
Think “Ovulation cycle” rather than “Menstrual cycle”

- Everything will make more sense.
- Why call something by its failure?
Why “menstrual cycle”?

- Menses is what we notice physically
- Hidden ovulation
 - No overt human signs of ovulation
 - Keeps the Hunter-gatherers around camp?
- T shirt studies
 - Maybe signs but we no longer pay attention
Abnormal Uterine Bleeding

• “Ovulation cycle” would make things more clear

• Oligo- (irregular) ovulation still results in pregnancy or normal (but irregular) menses

• Anovulation will not result in pregnancy and may lead to irregular menses, hyperplasia, etc
Follicle Stimulating Hormone

- TSH:T4
 - Like getting your kid to do homework. Constant oversight > work output

- FSH:E2
 - Like asking (FSH) your favorite Aunt (follicle) to bake some cookies (ovulation and CL production)
 - Ask politely and she’ll bake them (ovulation and CL production) w/o further oversight
Think of ovulation as a traffic light

If the light’s malfunctioning, traffic (menses) may go OK or not

- Expected in adolescence, perimenopause
- Estrogen may be very low if follicles suppressed (anorexia, xs exercise, “MFO”, >PRL, thyroid)
- Estrogen production and action may continue without progesterone withdrawal (irregular, prolonged, heavy menses, hyperplasia, cancer) (PCOS, thyroid)
AUB-O Rx

- Broken traffic light (anovulation)
 - “Fix the light”: if ovulation is important (fertility)
 - Put a “cop” in the intersection if not
 - Progestin vs OC
 - MPA 20mg (Megace 40mg, Aygestin 5mg) tid or OC tid x 7d then qd x 21d
 - Endometrial sampling and or surgery if pathology is suspected
AUB Hormonal Rx

- OC work by suppressing FSH and substituting EE and P for endogenous hormones: stopping ovulation, regulating cycle, reducing menses, etc. Just like biological norm

- Progestins work by down regulating estrogen receptors
 - episodically (cyclic oral) organizing and sloughing
 - Constant suppression
 - DMPA: suppress endometrium and ovary
 - Mirena: Suppresses endometrium, not ovary
AUB

• Treatment depends on present and future goals

• 48 G5P5 w/ TL, fibroids and dysmenorrhea treated differently than 18 G0 with hirsutism and weight gain.

• 25yo attempting pregnancy will be treated differently than 40yo sexually active smoker w/o contraception who desires no pregnancy
AUB physical Rx

- The target tissue may be abnormal or vasculature disturbed
- Common physical issues
 - Polyps (> 10% of women)
 - Fibroids (>40% with increasing age).
 - Location, location, location!
 - Adenomyosis (in 2/3rds of hysterectomies)
AUB

Leiomyoma subclassification system

<table>
<thead>
<tr>
<th>SM - Submucosal</th>
<th>O - Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Pedunculated intracavitary</td>
<td>3 Contacts endometrium; 100% intramural</td>
</tr>
<tr>
<td>1 <50% intramural</td>
<td>4 Intramural</td>
</tr>
<tr>
<td>2 ≥50% intramural</td>
<td>5 Subserosal ≥50% intramural</td>
</tr>
<tr>
<td>6 Subserosal <50% intramural</td>
<td>7 Subserosal pedunculated</td>
</tr>
<tr>
<td>7 Subserosal pedunculated</td>
<td>8 Other (specify e.g. cervical, parasitic)</td>
</tr>
</tbody>
</table>

Hybrid leiomyomas (impact both endometrium and serosa)

Two numbers are listed separated by a hyphen. By convention, the first refers to the relationship with the endometrium while the second refers to the relationship to the serosa. One example is below:

<table>
<thead>
<tr>
<th>SM</th>
<th>O</th>
<th>Hybrid leiomyomas (impact both endometrium and serosa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-5</td>
<td></td>
<td>Submucosal and subserosal, each with less than half the diameter in the endometrial and peritoneal cavities, respectively.</td>
</tr>
</tbody>
</table>
AUB physical Rx

Polypectomy, myomectomy

Ablation

Hysterectomy

Tranexamic acid (Lysteda)

• Maintains already created clot
Perimenopause

- Normal transitional state like adolescence
 - May be abnormal (excessive or endometrial pathology)
 - May need or desire treatment
 - Juggling up to 3 balls at a time
 - Bleeding (heavy, prolonged, irregular, painful)
 - Contraception
 - Menopausal symptoms
FSH: (Back to your Aunt)

• As she ages the cookies aren’t quite as good. Maybe she forgot something (follicle but no ovulation), and sometimes no cookies at all (>AUB)

• As she becomes more hard of hearing, you have to talk louder but once she hears you: cookies! (FSH rises higher to stim resistant follicles, often >>20)

• Once deaf (no more receptive follicles), no cookies, no matter how loud you are. (Don’t be surprised initially if suddenly cookies appear)

• No abnormal (or diagnostic) level of FSH, just how it relates
Menopause

• Very low levels (not zero) of E2 and E1 (<20pg/ml)
 • No follicle activity (once produced 60 – 600pg/ml)
• E2 from aromatization of existing androgens (mostly from adrenal production) in some tissues
 • Adipose cells: Obesity leads to higher circulating E2 levels. Better bones, thicker endometrium
 • Breast cancer cells: AIs can reduce breast CA risk
• Even this level is symptomatically meaningful for some
Menopause: Anthropology

- Normal adaptive event to post reproductive years (due to public health, etc)
 - Humans and Killer whales
 - Grandmother hypothesis: enhanced reproductive benefit to offspring
 - Only treat menopausal symptoms if needed
- Or
- Estrogen deprivation endocrinopathy
 - Wasting bones, worsening C-V events, etc
 - Treat it as a disease
Symptomatic menopausal treatment

- All ERs will respond in their reproductive age pattern to postmenopausal E2
 - Good for brain, vagina, and bone. C-V if timely.
 - Bad for endometrium
- SERMs
 - ERs respond selectively depending on tissue
 - Think of ER like a baseball glove: Catch all sorts
Post menopausal Rx

- Think of the target organs that will respond (brain, bone, etc)

- Levels are meaningless (when FDA approved products used) compared with clinical effect. There is no “balance”.

- If using estrogen and her uterus is present
 - Need to suppress estrogen proliferative effect on endometrium w/o negative impact on other tissues
 - Utilize progesterone to down regulate ER and decidualize the endometrium
 - BZA: anti ER
Post menopausal Rx:
Nothing universal about the available therapies

- Vehicle matters
 - Oral ET (eg E2 1mg) not TD (0.05mg) doubles VTE risk
 - 1st pass liver takes out 19/20 of the oral E2 and alters liver production of clotting factors, etc
 - E2 well absorbed thru the vagina
 - Femring 50-100mcg/d for systemic use
 - Estring 7.5mcg/d, Vagifem 3mcg/d
 - Creams: Low systemic level or rival systemic doses
Nothing universal:
The choice of P may matter

• Progestins: synthetic, $, many doses and effects

• Oral Micronized Progesterone (in peanut oil cap): sleepy (great for most, too much for some)

• Progesterone not universally well absorbed thru skin

• Don’t use P cream for endometrial protection
Compounded HT

- You are on your own.
- You decide dose, vehicle, combination
 - The Pharmacy won’t do it for you
- Nor will the FDA
ER

- ER alpha and beta (550 million yrs old)
- ERR: Estrogen related receptor
- GPR30: Non genomic ER in cytoplasm
- Different concentrations in different tissues
 - Helper proteins to add complexity
- Polymorphisms
Menopausal Sxs

- Think of 6 tissues out of the dozens with estrogen receptors
 - Endometrium
 - Brain
 - Vascular
 - Bone
 - Vagina
 - Breast
SERMs

- Tamoxifen
 - Originally and still indicated for ovulation stimulation
 - Antagonist: breast, vagina, brain. Agonist: endometrium, bone, VTE
- Raloxifen (Evista) same as TAM but neutral to endometrium
- Basedoxifene
 - Bone agonist (Europe)
 - Coupled with Premarin (Duavee). Anti-ER in endometrium only
- Ospemifene: Agonist: vagina. Antagonist (mice): endometrium, breast
- RAD1901 (Menopause Jan 2017)
 - Agonist for brain, bone. Antagonist for breast, endometrium
Menopause is the end of estrogen, right?

• Hardly

• Low but not absent E2 due to aromatization
 • Ask anyone starting an AI: HF, bone loss

• Environmental
 • Phytoestrogens
 • Xenoestrogens
Phytoestrogens

- Soy and other legumes: color flowers: attract bees and attract bacteria to the root: Fix nitrogen to make proteins
 - We didn’t figure this out until WWII
 - Explosives and fertilizer (Succotash)
- Clover: Sheep become infertile when eaten
- Giant fennel: Ancient Greece as OC (extinct)
Xenoestrogens
“Endocrine disruptors”

- Plastics: BPA, PCBs, phthalates
 - Carcinogenic, hormone cycle disruption
 - Also interrupt nitrogen fixation
- DDT
- Mycotoxins from fungi on stored grain, etc
Other estrogens
We are not alone

- BPA initially tested as a synthetic estrogen in the 1930s
- DES produced as an alternative
 - Stopped as prescription in 1971 but produced until 1996
- Production of 4m tons annually. 1m tons leached into the environment annually from waste
What’s the future?

- Evatar: NYTimes 3/30/17
 - Human tissue and hormone model
- SERMs
- Genetics to individualize treatment
- Minimally invasive surgery
- More xenoestrogens