Mild Traumatic Brain Injury:
The Military Experience and Applications for Management in the Community

Jay Pyo, D.O.
MAJ, MC, USA
Physical Medicine and Rehabilitation
Comprehensive Combat and Complex Casualty Care Program
Naval Medical Center San Diego

Cynthia Boyd, Ph.D.
Co-Senior Scientific Director
Defense & Veterans Brain Injury Center
Disclaimer

I am a military service member (or employee of the U.S. Government). This work was prepared as part of my official duties. Title 17, USC, §105 provides that ‘Copyright protection under this title is not available for any work of the U.S. Government.’ Title 17, USC, §101 defines a U.S. Government work as a work prepared by a military service member or employee of the U.S. Government as part of the person’s official duties.
Mild Traumatic Brain Injury: The Military Experience and Applications for Management in the Community.

Jay Pyo, D.O.
MAJ, MC, USA
Physical Medicine and Rehabilitation
Comprehensive Combat and Complex Casualty Care Program
Naval Medical Center San Diego
TBI “In the News”

- September 11th, 2001
- Iraq
- Afghanistan
- NFL
- NHL
- Congresswoman Giffords
- Other media outlets
- *Signature Injury*
Goals and Objectives

- History
- Definition
- Epidemiology
- Pathophysiology
Overview

- Assessing cognitive changes
- Understanding behavioral changes
- Co-morbid factors that interfere with recovery
History of TBI Rehabilitation

- Pre-1900
 - Penetrating head injury = 70% mortality
- WWI-WWII (Germany and Austria)
 - Advent of “TBI rehabilitation”
 - Recognition of neuropsychological impairments
 - Teaching strategies of preserved skills to compensate for impairments
 - Employment and vocation as outcome measure.
History of TBI Rehabilitation

- Post WWII (United Kingdom, Russia, United States)
 - Research
 - Compensatory training (motor planning, visual perception, executive functioning)
 - Functional Prognosis (PTA)
 - Medical Complications (seizures)
 - Multidisciplinary approach
 - Standardized testing
History of TBI Rehabilitation

- Professional Development to meet veteran’s needs.
 - SLP
 - PT
 - OT
 - Vocational
 - Mental Health
 - Physical Medicine and Rehabilitation (Physiatry)

- Dedicated rehabilitation centers
 - SCI
 - TBI
 - Stroke
 - Ortho (amputations)
THEN...

- ...and NOW
Traumatic brain injury (TBI)

- Nondegenerative, noncongenital insult to the brain
- External mechanical force
- Leading to permanent or temporary impairments of function
 - Cognitive
 - Physical
 - Psychosocial
- Associated diminished or altered state of consciousness.
Defining the problem

- Head Injury Interdisciplinary Special Interest Group of the American Congress of Rehabilitation Medicine
- Traumatically induced physiologic disruption of brain function
 - LOC
 - Immediate Retrograde/post-traumatic amnesia
 - Alteration of mental state (stars, dazed, “bell rung”)
 - Focal neurologic deficits
Grading

- Mild
- Moderate
- Severe
Mild TBI

- Does not exceed
 - LOC < 30min
 - PTA < 24hr
 - GCS 13-15
 - No imaging findings

- mTBI = Concussion?
 - It depends on who you talk to...
Moderate

- LOC: 30min-24hrs
- PTA: 24hr-1 week
- GCS 9-12
- Neuroimaging evidence of intracranial trauma
Severe

- LOC: >24hrs
- PTA: > 1 week
- GCS <8
- Neuroimaging evidence of intracranial trauma
- Penetrating/depressed/displaced scull fracture
Epidemiology: GWOT

- 12-35%, 1.6 million Service Members deployed in last 11 years.
- 80% Blast related (IED, RPG, EFP, etc.)
Epidemiology

- CDC
 - 2002-2006
- Incidence 1.7 million per year (underestimated?)

![Epidemiology Diagram]

- 52,000 Deaths
- 275,000 Hospitalizations
- 1,365,000 Emergency Department Visits
- ??? Receiving Other Medical Care or No Care*
Epidemiology

- Pitfalls
 - Inconsistent definition
 - Inadequate reporting
 - Inadequate imaging
MOI

- 35.2% Falls
- 16.5% Struck By/Against
- 21% Unknown/Other
- 17.3% Motor Vehicle-Traffic
- 10% Assault
Groups at Risk

- 59% male
- 0-4, 15-19, >65 yoa
- 18% TBI ER visits 0-4 yoa
- 22% hospitalization >75 yoa
 - Highest rate of hospitalization and death
Risk Factors

- Alcohol
- Substance Abuse
- Crime
- Societal factors
Trends 1979-1992

- TBI deaths down 22%
 - GSW deaths (up 9%)
 - #1 cause of TBI deaths
 - Decreased MVA deaths (down 42%)
- 30% associated with all injury related death.
Importance

- 5.3 million Americans—2% of the U.S. population—currently live with disabilities resulting from brain injury.

- $76.5 billion total direct/indirect medical cost and lost productivity (2000)
 - LBP ~ $100 billion
Importance

- 75% of TBIs that occur each year are mild TBI.
Prevention and Education

- Airbags
- Safety belts
- Helmets
- Violence prevention programs
- Falls prevention programs
- Proper sports equipment
- Combat protective equipment
Goff, et. Al.

Weight Supported by Neck
1) Kevlar Helmet- 4.2 lbs (1.9 kg)
2) Night Vision Goggles- 1.5 lbs (.68 kg)
3) Tactical Kevlar Light- 4 oz (12.5 grams)
Total weight = 5.95 lbs (2.69 kg)

Weight Supported by Back/ Shoulders
4) Body Armor System- 35 lbs (15.9 kg)
5) Tactical Load Vest- 2 lbs (0.90 kg)
6) 12 Magazines of ammunition- 15 lbs (6.8 kg)
7) 4 Fragmentation grenades- 6 lbs (2.7 kg)
8) 2 Flash Bang grenades- 2 lbs (0.90 kg)
9) 2 First Aid Kits- 2.2 lbs (1 kg)
10) Multi-purpose tool- 1 lb (0.45 kg)
11) Seatbelt Cutter- 6 oz (170 grams)
12) Back-pack Hydration style with 3 liters- 8 lbs (3.6 kg)
Total Weight = 71.53 lbs (32.5 kg)

Weapon Systems
13) Rifle- 6.9 lbs (3.1 kg)
14) Scope- 7 oz (198.5 grams)
15) Night Vision/ Laser Emitter- 7.5 oz (212.6 grams)
16) Tactical Mount Light- 1 lb (0.45 kg)
17) Foregrip/Tripod- 1 lb (0.45 kg)
18) Pistol- 3.1 lbs (1.4 kg)
19) 2 Magazines of ammunition- 2 lbs (0.90 kg)
20) Holster- 1.4 lbs (63 grams)
Total Weight = 16.40 lbs (7.43 kg)

ACU Uniform
21) Combat Shirt- 10 oz (283.5 grams)
22) Trousers- 1.2 lbs (0.54 kg)
23) Rigger Belt- 6 oz (170 grams)
24) Combat Boots- 4.4 lbs (2 kg)
25) Knee Pads- 1.2 lbs (0.54)
26) Gloves- 5 oz (141 grams)
27) Ballistic Eyewear- 1 oz (28.3 grams)
Total Weight = 8.15 lbs (3.7 kg)
http://en.wikipedia.org/wiki/MRAP

http://defensetech.org/2007/08/30/amazing-mrap-survival-photos/
Pathophysiology

- Self limiting
- Short lived
- Spontaneous resolution
- Transient disturbances
- Observation
- Underreported and underestimated
Pathophysicsology

- "mild" = absence of cranial lesion
 - "mild" describes mechanism of injury
- "mild" =/= 100% normal outcome or predict prognosis
- Typical resolution in 1-12wks
 - 15% remain symptomatic
Pathophysiology

- Diffuse Axonal Injury
- Spectrum of severity

http://www.braininjury.com/injured.shtml
http://www.uihealthcare.com/topics/medicaldepartments/neurosurgery/braininjury/03whattypesbraininjuries.html
Pathophysiology

- Neurochemical/Neurometabolic events
 - Release of excitatory amino acids (EAA)
 - Glutamate
 - Activation of NMDA receptors
 - Influx of calcium
 - Impairment of mitochondrial activity
Pathophysiology

- Neurochemical/Neurometabolic events
 - Imbalance of ATP consumption/production
 - Compromises synaptic plasticity
 - Focal neurologic and other cognitive/behavioral deficits
- N-acetylasperate (NAA)
 - Brain specific metabolite
 - Low levels suggest neuronal injury
 - Stroke, MS, dementia
Pathophysiology

- Neurochemical/Neurometabolic events
 - N-acetylasperate (NAA)
 - Brain specific metabolite (neuronal mitochondria)
 - High energy cost
 - Low levels suggest neuronal injury
 - Stroke, MS, dementia
 - Hypoxic/ischemic/toxic
 - Proton magnetic resonance spectroscopy (1H-MRS)
Pathophysiology

- **Neurochemical/Neurometabolic events**
 - N-acetylaspartate (NAA)
 - Animal models
 - Correlated with severity
 - Mild TBI vs. sham head injury
 - Brain vulnerability vs. Second Impact Syndrome
 - SIS is FATAL and rare (cerebral edema)
 - Changes in ATP/NAA in repeated mTBI models
- Resolution over time?
 - ~30 days
Pathophysiology

- Genetic expression
 - Increased ASPA gene expression
 - Decreased NAA production (depressed mitochondrial function)
Pathophysiologiat

- Clinical/Research applications
 - Monitor NAA levels
 - Determine window of clearance
 - Treatment targeting mitochondrial function
Modern State of TBI Surveillance

- DVBIC (DVHIP) – 1992 (GW)
- TBI Act of 1996
 - CDC
- DVBIC 2008 (GWOT)
 - “Signature Injury”
The DoD Approach

- Office of Neurotrauma, Navy Medicine West SoCal
 - Naval Medical Center San Diego
 - Naval Hospital Camp Pendleton
 - Naval Hospital Twentynine Palms
The NMCSD TEAM

- **DVBIC**
 - Multicenter network
 - Collaboration between DoD and VA entities
 - DCoE PH/TBI
- **Comprehensive Combat and Complex Casualty Care (C-5) Program**
 - Case Management and Primary Care model with a rehabilitation focus.
 - Management of all overseas/deployed service member who medically evacuated or transported to NMCSD.
 - Polytrauma Rehabilitation
The Approach

- VA-DoD CPG
 - Primary Care Model

- SATEPS
 - Screening
 - Assessment
 - Treatment
 - Education
 - Patient Follow-up
 - Surveillance
VA/DoD CPG

- Adult injury
- Apply to all medical providers
- Does not address acute management or mod/sev TBI.
VA/DoD CPG

- Establish accurate diagnosis
- Evidence based management and treatment
- Early intervention
- Multidisciplinary approach
VA/DoD CPG

- Adult injury
- Apply to all medical providers
- Does not address acute management or mod/sev TBI.
VA/DoD CPG

- Patient screening
- Patient education
- Early intervention
- Symptom management
 - Somatic
 - psychiatric
- RTD ASAP
 - Psycho-social support for refractory symptoms
 - Secondary gain?
- Continuity and Follow up.
Core Components

- **Screening:**
 - DVBIC TBI Screening Tool, TBI Severity Score

- **Assessment:**
 - Medical Exam

- **Treatment:**
 - 20 week care plan, VA DoD CPG, Interdisciplinary Team
Core Components

- **Education:**
 - Face to face with provider, DVBIC

- **Patient Follow-up:**
 - Interdisciplinary Team

- **Surveillance:**
 - Demographics, Tracking, Metrics
Military Demographics

- Navy Medicine West
TBI Patients Identified
n=2079

NHCP
NMCSD
NHTP

FY10
FY11 (3Q)

638
739

298
188

106
110

NHCP
NMCSD
NHTP
TBI Demographics

n=492

- USMC: 89%
- mTBI: 95%
- mTBI Symptomatic: 72%
- Blast: 74%
- Prev HI: 60%
TBI in the Community

- MVA
- Falls
- Violence
- Sports
 - Amateur Athlete
 - Baby Boomers
 - Gen-Xers
 - Millennials
 - Alcohol
Screening

- Neurosurgery/Neurology/PM&R
- SLP
- OT
- VT
- Optometry
- Dental
- Mental Health
- ENT/Audiology
- Neuropsych (>3-4 months)
Common Symptoms

- Post Concussive Syndrome (11-64%):
 - Headache
 - Dizziness,
 - Insomnia
 - Anergia
 - Irritability,
 - Anxiety
 - Dysphoria
 - Apathy
Management

- Also commonly seen in:
 - chronic pain
 - anxiety/depression
- Service Member without body or brain injury
 - headaches 8%
 - sleep disturbance 24%
 - fatigue 25%
 - memory difficulty 7%
 - irritability 24%
Symptoms of PTSD & TBI

PTSD
- Flashbacks
- Avoidance
- Hypervigilance
- Nightmares
- Re-experiencing phenomenon

TBI
- Headache
- Sensitivity to light or noise
- Nausea vomiting
- Vision Problems
- Dizziness

Common Symptoms
- Cognitive Deficits
- Irritability
- Insomnia
- Depression
- Fatigue
- Anxiety
Treatment

- NO MAGIC CURE FOR CONCUSSION...except time
 - Manage the symptoms
 - Develop compensatory strategies
Treatment

- TBI education (TEAM)
 - Empower patient and hold them accountable for recovery
 - Support improvements in function
 - Rehabilitation plan
 - Return to work/school plan.
 - Resist conveying that all difficulties are psychiatrically driven
 - Offer reasonable explanation for cognitive complaints
 - Be weary of secondary gain (36% MEB non-credible cognitive findings)
Conclusion

- MUST HAVE COORDINATED EFFORTS:
 - Improve symptoms
 - Maximize function
 - Return to work
 - Improve quality of life

- Multi-disciplinary efforts
References

- www.Dvbic.org
Cognitive Symptoms reported following concussion/mTBI

- Impaired memory
- Trouble concentrating
- Difficulty finding words
- Slowed overall processing
- Impaired organizational and problem solving skills
Neuropsychological Evaluation

Context of referral
- Self-referred
- Provider referred
- Medical Board

Pre-morbid Functioning
- Rank
- ASVAB scores
- Education
Credible vs. Non-credible Clinical Presentation

- Undocumented or questionable mild head injury
- Marked discrepancy between the individual’s claimed injury and the objective test findings
 - Implausible test results when compared to the medical history
Credible vs. Non-credible Clinical Presentation

- Excessive inconsistencies in test data
 - Poor performance on obvious, but not less obvious tasks of same function

- Symptom validity tests
 - Valid vs. invalid test performances
 - Will see terms: “inconsistent,” “invalid,” “results cannot be interpreted”
 - Effort vs. malingering
Credible vs. Non-credible Clinical Presentation

- Evaluate symptom complaints within the context of historical data, behavioral observations, and current “real world” functioning
- Be wary of a delayed onset of symptoms
- Assess for secondary gain
 - Litigation
 - Medical board
Neuropsychological Test Performance in Soldiers w/ Blast-Related Mild TBI (Brenner, et al., 2010)

- Exploratory study to examine whether persistent mTBI-related symptoms or PTSD negatively impacted test performance

- Compared 27 SM’s w/enduring mTBI symptoms to 18 SM’s w/o symptoms

- Results:
 - Presence of mTBI symptoms did not impact test performance
 - No significant differences between soldiers with and w/o PTSD were identified
Symptom validity test performance in U.S. veterans referred for evaluation of mild TBI

Armistead-Jehle (2010)

Medical Symptom Validity Test (MSVT)

58% scored below the cut scores on subtests more sensitive to effort than neurological insult

Those with service connection failed at a higher rate
Maybe it is not secondary gain?

- “Good Old Days” Bias Following Mild Traumatic Brain Injury
 - *The Clinical Neuropsychologist*

Research suggests that people who sustain an injury often underestimate past problems ("good old days")
“Good Old Days” Bias Following Mild Traumatic Brain Injury” Iverson, et al.(2010)

- Sample: 90 temporarily fully disabled individuals from a mTBI receiving Worker’s Compensation
- Patients provided post-injury & pre-injury retrospective ratings on the British Columbia Post-concussion Symptom Inventory
- Compared ratings with 177 healthy controls
“Good Old Days” Bias Following Mild Traumatic Brain Injury” Iverson, et al.(2010)

- mTBI patients endorsed fewer pre-injury symptoms compared to the controls
- Those who failed effort testing, reported fewer symptoms pre-injury compared to those who passed effort testing
- Many mTBI patients reported their pre-injury functioning as better than the average person
Important Facts

- Look for documentation
- Be wary of delayed symptoms or worsening of symptoms
- Are the symptoms in line with the medical history?
- Cognitive/psychiatric evaluations should contain formal SVT’s and embedded measures
- Avoid a “knee-jerk” assumption of secondary gain
- Consider the unknowns of blast-related TBI
- Never base conclusions on one test score
- Assess “real world” functioning
Co-morbid Complications

- TBI
- PTSD
- Substance Abuse
- Alcohol Abuse
- Chronic Pain
- Medication
In 2004: male veterans had lower incarceration rates than nonveterans; due in part to age differences.

65% of male veterans in 2004 were at least 55 years old.

More than half of veterans in state prisons were serving for a violent offense.

More likely to have had recent mental health problems.
Violence as a Consequence of TBI

- Not all brain-injured individuals are violent or aggressive
- Age of injury plays a role
- History of aggression
- Use of alcohol or drugs increases likelihood of aggressive acts
- Presence of a mental disorder increases likelihood of aggression
Behavioral Aspects of TBI

- Changes in cognitive abilities
- Poor impulse control
- Acting out Behavior
The Amygdala

- Linked to the frontal lobe
- Primary role is in the acquisition and the physiological expression of conditioned fears
- It processes and stores memories of emotional events
 - Stores feelings and physiologic responses associated with the event (fear with increased HR)
- The stored memory can later be triggered

Phelps, 2004
The Amygdala

- Flight and fear responses ("freezing")
- Has a distinct difference from a conscious feeling of fear
- Defensive or aggressive reactions
- Has a sensory input system
Aggression and Violence Interaction: PTSD & TBI

Increased activation
(limbic system)

Decreased Inhibition
(frontal lobes)
Increased Violence Potential

- History of Violence
- Substance Abuse Disorder
- Major Mental Illness
References

